Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory
Oleksiy Kapustyan; Olena Kapustian; Oleksandr Stanzytskyi; Ihor Korol
Archivum Mathematicum (2023)
- Volume: 059, Issue: 2, page 191-200
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKapustyan, Oleksiy, et al. "Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory." Archivum Mathematicum 059.2 (2023): 191-200. <http://eudml.org/doc/298987>.
@article{Kapustyan2023,
abstract = {In this paper we establish the existence of the uniform attractor for a semi linear parabolic problem with bounded non autonomous disturbances in the phase space of continuous functions. We applied obtained results to prove the asymptotic gain property with respect to the global attractor of the undisturbed system.},
author = {Kapustyan, Oleksiy, Kapustian, Olena, Stanzytskyi, Oleksandr, Korol, Ihor},
journal = {Archivum Mathematicum},
keywords = {parabolic equations; attractor; stability},
language = {eng},
number = {2},
pages = {191-200},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory},
url = {http://eudml.org/doc/298987},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Kapustyan, Oleksiy
AU - Kapustian, Olena
AU - Stanzytskyi, Oleksandr
AU - Korol, Ihor
TI - Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 2
SP - 191
EP - 200
AB - In this paper we establish the existence of the uniform attractor for a semi linear parabolic problem with bounded non autonomous disturbances in the phase space of continuous functions. We applied obtained results to prove the asymptotic gain property with respect to the global attractor of the undisturbed system.
LA - eng
KW - parabolic equations; attractor; stability
UR - http://eudml.org/doc/298987
ER -
References
top- Asrorov, F., Sobchuk, V., Kurylko, O., 10.15587/1729-4061.2019.178635, East-Europ. J. Enterprise Technol. 6 (4(102)) (2019), 14–20. (2019) DOI10.15587/1729-4061.2019.178635
- Barabash, O., Dakhno, N., Shevchenko, H., Sobchuk, V., Unmanned aerial vehicles flight trajectory optimisation on the basis of variational enequality algorithm and projection method, Proceeding 2019 IEEE 5th International Conference “Actual Problems of Unmanned Aerial Vehicles Developments” (APUAVD), National Aviation University, Kyiv, Ukraine, 2019, pp. 136–139. (2019)
- Chepyzkov, V.V., Vishik, M.I., Attractors for equations of mathematical physics, vol. 49, AMS Colloquium Publications, 2002. (2002) MR1868930
- Dashkovskiy, S., Feketa, P., Kapustyan, O., Romaniuk, I., 10.1016/j.jmaa.2017.09.001, J. Math. Anal. Appl. 458 (1) (2018), 193–218. (2018) MR3711900DOI10.1016/j.jmaa.2017.09.001
- Dashkovskiy, S., Kapustyan, O., Romaniuk, I., Global attractors of impulsive parabolic inclusions, Discrete Contin. Dyn. Syst. Ser. B 22 (5) (2017), 1875–1886. (2017) MR3627133
- Dashkovskiy, S., Kapustyan, O., Schmid, J., 10.1007/s00498-020-00256-w, Math. Control Signals Systems 32 (3) (2020), 309–326. (2020) MR4149749DOI10.1007/s00498-020-00256-w
- Dashkovskiy, S., Mironchenko, A., 10.1007/s00498-012-0090-2, Math. Control Signal Systems 25 (2013), 1–35. (2013) MR3022292DOI10.1007/s00498-012-0090-2
- Haraux, A., Kirane, M., 10.5802/afst.598, Ann. Fac. Sci. Toulouse Math. 5 (1983), 265–280. (1983) DOI10.5802/afst.598
- Kapustyan, O.V., Kapustian, O.A., Gorban, N.V., Khomenko, O.V., 10.1615/JAutomatInfScien.v47.i11.40, J. Automat. Inform. Sci. 47 (11) (2015), 48–59. (2015) DOI10.1615/JAutomatInfScien.v47.i11.40
- Kapustyan, O.V., Kasyanov, P.O., Valero, J., Structure of the global attractor for weak solutions of a reaction-diffusion equation, Appl. Math. Inform. Sci. 9 (5) (2015), 2257–2264. (2015) MR3358694
- Kichmarenko, O., Stanzhytskyi, O., Sufficient conditions for the existence of optimal controls for some classes of functional-differential equations, Nonlinear Dyn. Syst. Theory 18 (2) (2018), 196–211. (2018) MR3820833
- Manthey, R., Zausinger, T., Stochastic equations in , Stochastic Rep. 66 (1977), 370–373. (1977)
- Mironchenko, A., Prieur, Ch., 10.1137/19M1291248, SIAM Rev. 62 (2020), 529–614. (2020) MR4131339DOI10.1137/19M1291248
- Mironchenko, A., Wirtz, F., 10.1109/TAC.2017.2756341, IEEE Trans. Automat. Control 63 (6) (2018), 1602–1617. (2018) MR3805142DOI10.1109/TAC.2017.2756341
- Nakonechnyi, A.G., Mashchenko, S.O., Chikrii, V.K, 10.1615/JAutomatInfScien.v50.i1.40, J. Automat. Inform. Sci. 50 (1) (2018), 54–75. (2018) MR3821216DOI10.1615/JAutomatInfScien.v50.i1.40
- Nakonechnyi, O.G., Kapustian, O.A., Chikrii, A.O., 10.1007/s10559-019-00189-6, Cybernet. Systems Anal. 55 (5) (2019), 785–795. (2019) MR4017248DOI10.1007/s10559-019-00189-6
- Pazy, A., Semigroups of linear operators and applications to PDE, Springer-Verlag New York, 1983. (1983)
- Pichkur, V.V., Sobchuk, V.V., Mathematical models and control design of a functionally stable technological process, J. Optim. Differ. Equ. Appl. (JODEA) 21 (1) (2021), 1–11. (2021)
- Robinson, J., Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge University Press, 2001. (2001) MR1881888
- Samoilenko, A.M., Stanzhitskii, A.N., 10.1134/S0012266106040070, Differ. Equ. 42 (4) (2006), 505–511. (2006) MR2296521DOI10.1134/S0012266106040070
- Schmid, J., Kapustyan, O., Dashkovskiy, S., 10.3934/mcrf.2021044, Math. Control Relat. Fields 12 (3) (2022), 763–788. (2022) MR4459660DOI10.3934/mcrf.2021044
- Sell, G., You, Y., Dynamics of evolutionary equations, Springer New York, NY, 2000. (2000)
- Sontag, E.D., 10.1109/9.28018, IEEE Trans. Automat. Control 34 (4) (1989), 435–443. (1989) DOI10.1109/9.28018
- Sontag, E.D., Mathematical control theory. Deterministic finite-dimensional systems, Springer, N.Y., 1998. (1998)
- Stanzhitskii, A.M., 10.1023/A:1010437625118, Ukrainian Math. J. 53 (2) (2001), 323–327. (2001) MR1833535DOI10.1023/A:1010437625118
- Stanzhyts’kyi, O., 10.1023/A:1015259031308, Ukrainian Math. J. 53 (11) (2001), 1882–1894. (2001) DOI10.1023/A:1015259031308
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.