Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory
Oleksiy Kapustyan; Olena Kapustian; Oleksandr Stanzytskyi; Ihor Korol
Archivum Mathematicum (2023)
- Volume: 059, Issue: 2, page 191-200
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Asrorov, F., Sobchuk, V., Kurylko, O., 10.15587/1729-4061.2019.178635, East-Europ. J. Enterprise Technol. 6 (4(102)) (2019), 14–20. (2019) DOI10.15587/1729-4061.2019.178635
- Barabash, O., Dakhno, N., Shevchenko, H., Sobchuk, V., Unmanned aerial vehicles flight trajectory optimisation on the basis of variational enequality algorithm and projection method, Proceeding 2019 IEEE 5th International Conference “Actual Problems of Unmanned Aerial Vehicles Developments” (APUAVD), National Aviation University, Kyiv, Ukraine, 2019, pp. 136–139. (2019)
- Chepyzkov, V.V., Vishik, M.I., Attractors for equations of mathematical physics, vol. 49, AMS Colloquium Publications, 2002. (2002) MR1868930
- Dashkovskiy, S., Feketa, P., Kapustyan, O., Romaniuk, I., 10.1016/j.jmaa.2017.09.001, J. Math. Anal. Appl. 458 (1) (2018), 193–218. (2018) MR3711900DOI10.1016/j.jmaa.2017.09.001
- Dashkovskiy, S., Kapustyan, O., Romaniuk, I., Global attractors of impulsive parabolic inclusions, Discrete Contin. Dyn. Syst. Ser. B 22 (5) (2017), 1875–1886. (2017) MR3627133
- Dashkovskiy, S., Kapustyan, O., Schmid, J., 10.1007/s00498-020-00256-w, Math. Control Signals Systems 32 (3) (2020), 309–326. (2020) MR4149749DOI10.1007/s00498-020-00256-w
- Dashkovskiy, S., Mironchenko, A., 10.1007/s00498-012-0090-2, Math. Control Signal Systems 25 (2013), 1–35. (2013) MR3022292DOI10.1007/s00498-012-0090-2
- Haraux, A., Kirane, M., 10.5802/afst.598, Ann. Fac. Sci. Toulouse Math. 5 (1983), 265–280. (1983) DOI10.5802/afst.598
- Kapustyan, O.V., Kapustian, O.A., Gorban, N.V., Khomenko, O.V., 10.1615/JAutomatInfScien.v47.i11.40, J. Automat. Inform. Sci. 47 (11) (2015), 48–59. (2015) DOI10.1615/JAutomatInfScien.v47.i11.40
- Kapustyan, O.V., Kasyanov, P.O., Valero, J., Structure of the global attractor for weak solutions of a reaction-diffusion equation, Appl. Math. Inform. Sci. 9 (5) (2015), 2257–2264. (2015) MR3358694
- Kichmarenko, O., Stanzhytskyi, O., Sufficient conditions for the existence of optimal controls for some classes of functional-differential equations, Nonlinear Dyn. Syst. Theory 18 (2) (2018), 196–211. (2018) MR3820833
- Manthey, R., Zausinger, T., Stochastic equations in , Stochastic Rep. 66 (1977), 370–373. (1977)
- Mironchenko, A., Prieur, Ch., 10.1137/19M1291248, SIAM Rev. 62 (2020), 529–614. (2020) MR4131339DOI10.1137/19M1291248
- Mironchenko, A., Wirtz, F., 10.1109/TAC.2017.2756341, IEEE Trans. Automat. Control 63 (6) (2018), 1602–1617. (2018) MR3805142DOI10.1109/TAC.2017.2756341
- Nakonechnyi, A.G., Mashchenko, S.O., Chikrii, V.K, 10.1615/JAutomatInfScien.v50.i1.40, J. Automat. Inform. Sci. 50 (1) (2018), 54–75. (2018) MR3821216DOI10.1615/JAutomatInfScien.v50.i1.40
- Nakonechnyi, O.G., Kapustian, O.A., Chikrii, A.O., 10.1007/s10559-019-00189-6, Cybernet. Systems Anal. 55 (5) (2019), 785–795. (2019) MR4017248DOI10.1007/s10559-019-00189-6
- Pazy, A., Semigroups of linear operators and applications to PDE, Springer-Verlag New York, 1983. (1983)
- Pichkur, V.V., Sobchuk, V.V., Mathematical models and control design of a functionally stable technological process, J. Optim. Differ. Equ. Appl. (JODEA) 21 (1) (2021), 1–11. (2021)
- Robinson, J., Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge University Press, 2001. (2001) MR1881888
- Samoilenko, A.M., Stanzhitskii, A.N., 10.1134/S0012266106040070, Differ. Equ. 42 (4) (2006), 505–511. (2006) MR2296521DOI10.1134/S0012266106040070
- Schmid, J., Kapustyan, O., Dashkovskiy, S., 10.3934/mcrf.2021044, Math. Control Relat. Fields 12 (3) (2022), 763–788. (2022) MR4459660DOI10.3934/mcrf.2021044
- Sell, G., You, Y., Dynamics of evolutionary equations, Springer New York, NY, 2000. (2000)
- Sontag, E.D., 10.1109/9.28018, IEEE Trans. Automat. Control 34 (4) (1989), 435–443. (1989) DOI10.1109/9.28018
- Sontag, E.D., Mathematical control theory. Deterministic finite-dimensional systems, Springer, N.Y., 1998. (1998)
- Stanzhitskii, A.M., 10.1023/A:1010437625118, Ukrainian Math. J. 53 (2) (2001), 323–327. (2001) MR1833535DOI10.1023/A:1010437625118
- Stanzhyts’kyi, O., 10.1023/A:1015259031308, Ukrainian Math. J. 53 (11) (2001), 1882–1894. (2001) DOI10.1023/A:1015259031308