Volterra integral equations associated with a class of nonlinear operators in Hilbert spaces

Enzo Mitidieri; Mario Tosques

Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)

  • Volume: 8, Issue: 2, page 131-158
  • ISSN: 0240-2963

How to cite

top

Mitidieri, Enzo, and Tosques, Mario. "Volterra integral equations associated with a class of nonlinear operators in Hilbert spaces." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1986-1987): 131-158. <http://eudml.org/doc/73191>.

@article{Mitidieri1986-1987,
author = {Mitidieri, Enzo, Tosques, Mario},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Hilbert space; nonlinear Volterra equation; monotone operator; existence; uniqueness; regularity},
language = {eng},
number = {2},
pages = {131-158},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Volterra integral equations associated with a class of nonlinear operators in Hilbert spaces},
url = {http://eudml.org/doc/73191},
volume = {8},
year = {1986-1987},
}

TY - JOUR
AU - Mitidieri, Enzo
AU - Tosques, Mario
TI - Volterra integral equations associated with a class of nonlinear operators in Hilbert spaces
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 131
EP - 158
LA - eng
KW - Hilbert space; nonlinear Volterra equation; monotone operator; existence; uniqueness; regularity
UR - http://eudml.org/doc/73191
ER -

References

top
  1. [1] Barbu ( V.).- Nonlinear Volterra equations in Hilbert spaces, Siam J. Math. Anal., t. 6, 1975, p. 728-741. Zbl0322.45012MR377620
  2. [2] Barbu ( V.).- Nonlinear semigroups and differential equations in Banach spaces. Noordhoff, Leyden, 1976. Zbl0328.47035MR390843
  3. [3] Brezis ( H.). — Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert. - Notas de Matematica (50), North-Holland, 1973. Zbl0252.47055MR348562
  4. [4] De Giorgi ( E.), Degiovanni ( M.), Marino ( A.), Tosques ( M.).- Evolution equations for a class of nonlinear operators, Acc. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Nat., t. (8)75, 1983, p. 1-8. Zbl0597.47045MR780801
  5. [5] De Giorgi ( E.), Marino ( A.), Tosques ( M.).- Funzioni (p, q)-convesse, Acc. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Nat., t. (8)73, 1982, p. 6-14. Zbl0521.49011MR726279
  6. [6] Degiovanni ( M.), Marino ( A.), Tosques ( M.).- General properties of p, q)-convex functions and (p, q)-monotone operators, Ricerche di Matematica, t. XXXII(II), 1983, p. 285-319. Zbl0555.49007MR766683
  7. [7] Degiovanni ( M.), Marino ( A.) and Tosques ( M.). — Evolution equations associated with (p, q)-convex functions and (p, q)-monotone operators, Ricerche di Matematica, t. XXXIII, 1984, p. 81-112. Zbl0582.49005MR795157
  8. [8] Degiovanni ( M.), Marino ( A.) and Tosques ( M.). — Evolution equations with lack of convexity, Nonlinear Anal. The Meth. and Appl., t. 9,12, 1985, p. 1401-1443. Zbl0545.46029MR820649
  9. [9] Degiovanni ( M.) and Tosques ( M.).- Evolution equations for (φ, f)-monotone operators, Bol. U.M.I., t. (6)5-B, 1986, p. 537-568. Zbl0615.47047MR860642
  10. [10] Crandall ( M.G.) and Nohel ( J.A.).- An abstract functional differential equation and a related nonlinear Volterra equation, Israel J. of Math., t. 29, 1978, p. 313-328. Zbl0373.34035MR477910
  11. [11] Gripenberg ( G.).- An existence result for a nonlinear Volterra integral equation in Hilbert space, SIAM J. Math. Anal., t. 9, 1978, p. 793-805. Zbl0393.45011MR506760
  12. [12] Kiffe ( T.).-A discontinuous Volterra integral equation, J. Integral Eq., t. 1, 1979, p. 193-200. Zbl0452.45008MR540826
  13. [13] Kiffe ( T.) and Stecher ( M.).- Existence and uniqueness of solutions to abstract Volterra integral equations, Proc. A.M.S., t. 68, 1978, p. 169-175. Zbl0382.45015MR481983
  14. [14] Londen ( S.O.). - On an integral equation in a Hilbert space, SIAM J. Math. Anal.., t. 8, 1977, p. 950-970. Zbl0379.45011MR511229
  15. [15] Londen ( S.O.).- On a nonlinear Volterra equation, J. Math. Anal. Appl., t. 39, 1972, p. 458-476. MR313743
  16. [16] Londen ( S.O.). - On a nonlinear Volterra equation, J. Differential Eq., t. 14, 1973, p. 106-120. Zbl0246.45002MR340995
  17. [17] Miller ( R.K. ).- Nonlinear Volterra integral equations.- W.A. Benjamin, Menlo Park CA. 1971. Zbl0448.45004MR511193
  18. [18] Marino ( A.) and Scolozzi ( D.).- Autovalori dell'operatore di Lapiace ed equazioni di evoluzione in presenza di ostacolo, Problemi differenziali e teoria dei punti critici (Bari, 1984) p. 137-155. - Pitagora, Bologna1984. Zbl0613.35024MR817778
  19. [19] Marino ( A.) and Scolozzi ( D.).- Punti inferiormente stazionari ed equazioni di evoluzione con vincoli unilaterali non convessi, Rend. Sem. Mat. Fis. Milano, t. 52, 1982, p. 393-414. MR802954
  20. [20] Pazy ( A.). - Semigroups of nonlinear contractions in Hilbert space. - Problems in nonlinear analysis, C.I.M.E.Varenna, Cremonese1971. Zbl0228.47038MR291877
  21. [21] Rammolet ( C.). - Existence and boundness results for abstract nonlinear Volterra equations of nonconvolution type, J. Integral Eq., t. 3, 1981, p. 137-151. Zbl0462.45024MR623829
  22. [22] Kiffe ( T.).-A Volterra integral equation and multiple valued functions, J. Integral Eq., t. 3, 1981, p. 93-108. Zbl0479.45004MR623827

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.