Curves of maximal slope and parabolic variational inequalities on non-convex constraints
Antonio Marino; Claudio Saccon; Mario Tosques
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)
- Volume: 16, Issue: 2, page 281-330
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMarino, Antonio, Saccon, Claudio, and Tosques, Mario. "Curves of maximal slope and parabolic variational inequalities on non-convex constraints." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.2 (1989): 281-330. <http://eudml.org/doc/84055>.
@article{Marino1989,
author = {Marino, Antonio, Saccon, Claudio, Tosques, Mario},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {geodesics; obstacle; heat equation},
language = {eng},
number = {2},
pages = {281-330},
publisher = {Scuola normale superiore},
title = {Curves of maximal slope and parabolic variational inequalities on non-convex constraints},
url = {http://eudml.org/doc/84055},
volume = {16},
year = {1989},
}
TY - JOUR
AU - Marino, Antonio
AU - Saccon, Claudio
AU - Tosques, Mario
TI - Curves of maximal slope and parabolic variational inequalities on non-convex constraints
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 2
SP - 281
EP - 330
LA - eng
KW - geodesics; obstacle; heat equation
UR - http://eudml.org/doc/84055
ER -
References
top- [1] J.P. Aubin - A. Cellina, Differential Inclusions, Springer Verlag, 1984. Zbl0538.34007MR755330
- [2] J.P. Aubin - I. Ekeland, Applied Nonlinear Analysis, Springer Verlag, 1984. Zbl0641.47066MR749753
- [3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Nord Hoff. International Pubbl., Heldermann Verlag, 1981. Zbl0328.47035
- [4] H. Brézis, Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert, North-Holland Mathematics Studies, n. 5, Notas de Matematica (50), Amsterdam- London, 1973. Zbl0252.47055MR348562
- [5] A. Canino, On p-convex sets and geodesics, to appear. MR957011
- [6] G. Chobanov - A. Marino - D. Scolozzi, Evolution equations for the eigenvalue problem for the Laplace operator with respect to an obstacle, submitted to Ann. Scuola Norm. Sup. Pisa. Zbl0729.35088
- [7] G. Chobanov - A. Marino - D. Scolozzi, Multiplicity of eigenvalue for the Laplace operator with respect to an obstacle and non-tangency conditions, to appear on Nonlinear Anal. The. Meth. Appl. Zbl0716.49009MR1065252
- [8] F.H. Clarke, Optimization and Nonsmooth Analysis, WileyInterscience, 1983. Zbl0582.49001MR709590
- [9] M.G. Crandall, An introduction to evolution governed by accretive operators, Dynamical Systems-An International Symposium, Academic Press, 1976, pp. 131-165. Zbl0339.35049MR636953
- [10] M.G. Crandall, J.M. Ligget, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), pp. 265-298. Zbl0226.47038MR287357
- [11] E. De Giorgi - M. Degiovanni, A. Marino, M. Tosques, Evolution equations for a class of non-linear operators, Atti Accadem. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983), pp. 1-8. Zbl0597.47045
- [12] E. De Giorgi - A. Marino - M. Tosques, Problemi di evoluzione di spazi metrici e curve di massima pendenza, Atti Accadem. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 (1980), pp. 180-187. Zbl0465.47041MR636814
- [13] E. De Giorgi - A. Marino - M. Tosques, Funzioni (p, q)-convesse, Atti Accadem. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 73 (1982), pp. 6-14. Zbl0521.49011MR726279
- [14] M. Degiovanni, Parabolic equations with time-dependent boundary conditions, Ann. Mat. Pura Appl., (IV), CXLI, pp. 223-264. Zbl0592.35070
- [15] M. Degiovanni - A. Marino - M. Tosques, General properties of (p, q)-convex functions and (p, q)-monotone operators, Ricerche Mat.32 (1983), pp. 285-319. Zbl0555.49007MR766683
- [16] M. Degiovanni - A. Marino - M. Tosques, Evolution equations associated with (p, q)-convex functions and (p, q)-monotone operators, Ricerche Mat.33 (1984), pp. 81-112. Zbl0582.49005MR795157
- [17] M. Degiovanni - A. Marino - M. Tosques, Evolution equations with lack of convexity, Nonlinear Anal. The. Meth. and Appl., Vol. 9, 12 (1985), pp. 1401-1443. Zbl0545.46029MR820649
- [18] M. Degiovanni - M. Tosques, Evolution equations for (Φ, f)-monotone operators, Boll. Un. Mat. Ital. (6) 6-B, pp. 537-568. Zbl0615.47047
- [19] D. Kinderlehrer - G. Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, 88, Academic Press, New York, London, Toronto, Ont. 1980. Zbl0457.35001MR567696
- [20] G. Letta, Teoria elementare dell'integrazione, Boringhieri1976. Zbl0316.28002
- [21] A. Marino, Evolution equation and multiplicity of critical points with respect to an obstacle, Contribution to Modem Calculus of Variations, Cesari Ed. Res. Notes in Math., Pitman (to appear). Zbl0621.58005MR894076
- [22] A. Marino - D. Scolozzi, Geodetiche con ostacolo, Boll. Un. Mat. Ital.B(6) 2 (1983), pp.1-31. MR698480
- [23] A. Marino - D. Scolozzi, Autovalori dell'operatore di Laplace ed equazioni di evoluzione di presenza di ostacolo, Problemi differenziali e teoria dei punti critici (Bari, 1984), pp. 137-155. Pitagora, Bologna, 1984. Zbl0613.35024MR817778
- [24] A. Marino - M. Tosques, Curves of maximal slope for a certain class of non-regular functions, Boll. Un. Mat. Ital.B(6) 1 (1982), pp. 143-170. Zbl0495.58012MR654928
- [25] E. Mitidieri - M. Tosques, Volterra integral equations associated with a class of nonlinear operators in Hilbert spaces, Ann. Fac. Sci. Tolouse Math., (5), VIII, n. 2(1986-87). Zbl0608.45008MR928841
- [26] E. Mitidieri - M. Tosques, Nonlinear integrodifferential equation in Hilbert spaces: the variational case, Proceedings of the congress "Volterra integral equations in Banach spaces and applications" (Trento, Feb. 1987), to appear. Zbl0674.45011
- [27] R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math., 32 (1980), pp. 257-280. Zbl0447.49009MR571922
- [28] R.T. Rockafellar, The theory of subgradients and its application to problem of optimization. Convex and non-convex functions. Heldermann Verlag, 1981. Zbl0462.90052MR623763
- [29] C. Saccon, Some parabolic equations on nonconvex Constraints. Boll. Un. Mat. Ital. (7) 3-B (1989), 369-386. Zbl0716.35035MR998002
- [30] C. Saccon, On an evolution problem with free boundary, to appear in Houston J. of Math. Zbl0739.49009MR1071268
- [31] D. Scolozzi, Esistenza e molteplicità di geodetiche con ostacolo con estremi variabili, Ricerche Mat.33 (1984), pp. 171-201. Zbl0592.53040
- [32] D. Scolozzi, Un teorema di esistenza di una geodetica chiusa su varietà con bordo, Boll. U.M.I. (6) 4-A (1985), pp. 451-457.
- [33] M. Tosques, Quasi-autonomous evolution equation associated with (Φ, f)-monotone operators, to appear in Ricerche di Matematica.
Citations in EuDML Documents
top- Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré, Gradient flows with metric and differentiable structures, and applications to the Wasserstein space
- Riccarda Rossi, Giuseppe Savaré, Existence and approximation results for gradient flows
- Ugo Gianazza, Massimo Gobbino, Giuseppe Savarè, Evolution Problems and Minimizing Movements
- Alexander Mielke, Ulisse Stefanelli, Weighted energy-dissipation functionals for gradient flows
- Marlène Frigon, Antonio Marino, Claudio Saccon, Some problems of parabolic type with discontinuous nonlinearities on convex constraints
- Riccarda Rossi, Giuseppe Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications
- Riccarda Rossi, Alexander Mielke, Giuseppe Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications
- Alexander Mielke, Ulisse Stefanelli, Weighted energy-dissipation functionals for gradient flows
- Claudio Saccon, Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.