Curves of maximal slope and parabolic variational inequalities on non-convex constraints

Antonio Marino; Claudio Saccon; Mario Tosques

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 2, page 281-330
  • ISSN: 0391-173X

How to cite

top

Marino, Antonio, Saccon, Claudio, and Tosques, Mario. "Curves of maximal slope and parabolic variational inequalities on non-convex constraints." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.2 (1989): 281-330. <http://eudml.org/doc/84055>.

@article{Marino1989,
author = {Marino, Antonio, Saccon, Claudio, Tosques, Mario},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {geodesics; obstacle; heat equation},
language = {eng},
number = {2},
pages = {281-330},
publisher = {Scuola normale superiore},
title = {Curves of maximal slope and parabolic variational inequalities on non-convex constraints},
url = {http://eudml.org/doc/84055},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Marino, Antonio
AU - Saccon, Claudio
AU - Tosques, Mario
TI - Curves of maximal slope and parabolic variational inequalities on non-convex constraints
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 2
SP - 281
EP - 330
LA - eng
KW - geodesics; obstacle; heat equation
UR - http://eudml.org/doc/84055
ER -

References

top
  1. [1] J.P. Aubin - A. Cellina, Differential Inclusions, Springer Verlag, 1984. Zbl0538.34007MR755330
  2. [2] J.P. Aubin - I. Ekeland, Applied Nonlinear Analysis, Springer Verlag, 1984. Zbl0641.47066MR749753
  3. [3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Nord Hoff. International Pubbl., Heldermann Verlag, 1981. Zbl0328.47035
  4. [4] H. Brézis, Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert, North-Holland Mathematics Studies, n. 5, Notas de Matematica (50), Amsterdam- London, 1973. Zbl0252.47055MR348562
  5. [5] A. Canino, On p-convex sets and geodesics, to appear. MR957011
  6. [6] G. Chobanov - A. Marino - D. Scolozzi, Evolution equations for the eigenvalue problem for the Laplace operator with respect to an obstacle, submitted to Ann. Scuola Norm. Sup. Pisa. Zbl0729.35088
  7. [7] G. Chobanov - A. Marino - D. Scolozzi, Multiplicity of eigenvalue for the Laplace operator with respect to an obstacle and non-tangency conditions, to appear on Nonlinear Anal. The. Meth. Appl. Zbl0716.49009MR1065252
  8. [8] F.H. Clarke, Optimization and Nonsmooth Analysis, WileyInterscience, 1983. Zbl0582.49001MR709590
  9. [9] M.G. Crandall, An introduction to evolution governed by accretive operators, Dynamical Systems-An International Symposium, Academic Press, 1976, pp. 131-165. Zbl0339.35049MR636953
  10. [10] M.G. Crandall, J.M. Ligget, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), pp. 265-298. Zbl0226.47038MR287357
  11. [11] E. De Giorgi - M. Degiovanni, A. Marino, M. Tosques, Evolution equations for a class of non-linear operators, Atti Accadem. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983), pp. 1-8. Zbl0597.47045
  12. [12] E. De Giorgi - A. Marino - M. Tosques, Problemi di evoluzione di spazi metrici e curve di massima pendenza, Atti Accadem. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 (1980), pp. 180-187. Zbl0465.47041MR636814
  13. [13] E. De Giorgi - A. Marino - M. Tosques, Funzioni (p, q)-convesse, Atti Accadem. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 73 (1982), pp. 6-14. Zbl0521.49011MR726279
  14. [14] M. Degiovanni, Parabolic equations with time-dependent boundary conditions, Ann. Mat. Pura Appl., (IV), CXLI, pp. 223-264. Zbl0592.35070
  15. [15] M. Degiovanni - A. Marino - M. Tosques, General properties of (p, q)-convex functions and (p, q)-monotone operators, Ricerche Mat.32 (1983), pp. 285-319. Zbl0555.49007MR766683
  16. [16] M. Degiovanni - A. Marino - M. Tosques, Evolution equations associated with (p, q)-convex functions and (p, q)-monotone operators, Ricerche Mat.33 (1984), pp. 81-112. Zbl0582.49005MR795157
  17. [17] M. Degiovanni - A. Marino - M. Tosques, Evolution equations with lack of convexity, Nonlinear Anal. The. Meth. and Appl., Vol. 9, 12 (1985), pp. 1401-1443. Zbl0545.46029MR820649
  18. [18] M. Degiovanni - M. Tosques, Evolution equations for (Φ, f)-monotone operators, Boll. Un. Mat. Ital. (6) 6-B, pp. 537-568. Zbl0615.47047
  19. [19] D. Kinderlehrer - G. Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, 88, Academic Press, New York, London, Toronto, Ont. 1980. Zbl0457.35001MR567696
  20. [20] G. Letta, Teoria elementare dell'integrazione, Boringhieri1976. Zbl0316.28002
  21. [21] A. Marino, Evolution equation and multiplicity of critical points with respect to an obstacle, Contribution to Modem Calculus of Variations, Cesari Ed. Res. Notes in Math., Pitman (to appear). Zbl0621.58005MR894076
  22. [22] A. Marino - D. Scolozzi, Geodetiche con ostacolo, Boll. Un. Mat. Ital.B(6) 2 (1983), pp.1-31. MR698480
  23. [23] A. Marino - D. Scolozzi, Autovalori dell'operatore di Laplace ed equazioni di evoluzione di presenza di ostacolo, Problemi differenziali e teoria dei punti critici (Bari, 1984), pp. 137-155. Pitagora, Bologna, 1984. Zbl0613.35024MR817778
  24. [24] A. Marino - M. Tosques, Curves of maximal slope for a certain class of non-regular functions, Boll. Un. Mat. Ital.B(6) 1 (1982), pp. 143-170. Zbl0495.58012MR654928
  25. [25] E. Mitidieri - M. Tosques, Volterra integral equations associated with a class of nonlinear operators in Hilbert spaces, Ann. Fac. Sci. Tolouse Math., (5), VIII, n. 2(1986-87). Zbl0608.45008MR928841
  26. [26] E. Mitidieri - M. Tosques, Nonlinear integrodifferential equation in Hilbert spaces: the variational case, Proceedings of the congress "Volterra integral equations in Banach spaces and applications" (Trento, Feb. 1987), to appear. Zbl0674.45011
  27. [27] R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math., 32 (1980), pp. 257-280. Zbl0447.49009MR571922
  28. [28] R.T. Rockafellar, The theory of subgradients and its application to problem of optimization. Convex and non-convex functions. Heldermann Verlag, 1981. Zbl0462.90052MR623763
  29. [29] C. Saccon, Some parabolic equations on nonconvex Constraints. Boll. Un. Mat. Ital. (7) 3-B (1989), 369-386. Zbl0716.35035MR998002
  30. [30] C. Saccon, On an evolution problem with free boundary, to appear in Houston J. of Math. Zbl0739.49009MR1071268
  31. [31] D. Scolozzi, Esistenza e molteplicità di geodetiche con ostacolo con estremi variabili, Ricerche Mat.33 (1984), pp. 171-201. Zbl0592.53040
  32. [32] D. Scolozzi, Un teorema di esistenza di una geodetica chiusa su varietà con bordo, Boll. U.M.I. (6) 4-A (1985), pp. 451-457. 
  33. [33] M. Tosques, Quasi-autonomous evolution equation associated with (Φ, f)-monotone operators, to appear in Ricerche di Matematica. 

Citations in EuDML Documents

top
  1. Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré, Gradient flows with metric and differentiable structures, and applications to the Wasserstein space
  2. Riccarda Rossi, Giuseppe Savaré, Existence and approximation results for gradient flows
  3. Ugo Gianazza, Massimo Gobbino, Giuseppe Savarè, Evolution Problems and Minimizing Movements
  4. Alexander Mielke, Ulisse Stefanelli, Weighted energy-dissipation functionals for gradient flows
  5. Marlène Frigon, Antonio Marino, Claudio Saccon, Some problems of parabolic type with discontinuous nonlinearities on convex constraints
  6. Riccarda Rossi, Giuseppe Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications
  7. Riccarda Rossi, Alexander Mielke, Giuseppe Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications
  8. Alexander Mielke, Ulisse Stefanelli, Weighted energy-dissipation functionals for gradient flows
  9. Claudio Saccon, Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.