Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques

Guy Robin

Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)

  • Volume: 8, Issue: 2, page 159-173
  • ISSN: 0240-2963

How to cite

top

Robin, Guy. "Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1986-1987): 159-173. <http://eudml.org/doc/73193>.

@article{Robin1986-1987,
author = {Robin, Guy},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {distribution of primes in arithmetic progressions; asymptotic estimate; Shanks conjecture; Euler function; Brent conjecture; generalized Riemann hypothesis},
language = {fre},
number = {2},
pages = {159-173},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques},
url = {http://eudml.org/doc/73193},
volume = {8},
year = {1986-1987},
}

TY - JOUR
AU - Robin, Guy
TI - Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 159
EP - 173
LA - fre
KW - distribution of primes in arithmetic progressions; asymptotic estimate; Shanks conjecture; Euler function; Brent conjecture; generalized Riemann hypothesis
UR - http://eudml.org/doc/73193
ER -

References

top
  1. [AND] Anderson ( R.B.) et Stark ( H.M.). — Oscillation theorems. — Lectures notes n°899, Analytic number theory, 1980. Zbl0472.10044MR654520
  2. [BEN] Bentz ( H.J.). — Discrepancies in the Distribution of Prime Numbers, Journ. of number theory, t. 15, 1982, p. 252-274. Zbl0489.10042MR675189
  3. [BRE] Brent ( R.P.). — Irregularities in the distribution of primes and twin primes, Math. of Comp., t. 29, Numb. 129,Janv., 1975, p. 43 -56. Zbl0295.10002MR369287
  4. [CHE] Chen ( W.W.L.).- On the error term of the prime number theorem and the difference between the number of primes in the residue classes modulo4, J.Lond. Math. Soc.(2), t. 23, 1981, p. 24-40. Zbl0452.10041MR602236
  5. [DAV] Davenport ( H.).—Multiplicative number theory. — Springer Verlag, 1967. Zbl0159.06303
  6. [ELL] Ellison ( J.). — Les nombres premiers. — HermannParis. Actual. Scien. et Ind. n°1366, 1975. Zbl0313.10001MR417077
  7. [GRO] Grosswald ( E.).- Oscillation theorems. Conf. on the theory of arithmetic functions. — SpringerLecture Notes251, 1971. Zbl0228.10026MR332685
  8. [HAR1] Hardy ( G.H.) et Littlewood ( J.E.).-Contributions to the theory of the Riemann Zeta function and the theory of the distribution of primes, Acta Math, t. 41, 1917, p. 119-196. Zbl46.0498.01JFM46.0498.01
  9. [HAR2] Hardy ( G.H.) et Wright ( E.M.).- An introduction to the theory of numbers. Oxford, 1960. Zbl0086.25803MR67125
  10. [HAS] Haselgrove ( C.B.) et Davies ( D.).- The evaluation of Dirichlet L functions, Proc. Roy. Soc. Ser.A, t. 264, 1961, p. 122-132. Zbl0109.03102MR136052
  11. [KNA] Knapowski ( S.) et Turan ( P.).- Comparative prime number theory,I-VIII, Acta Math. Acad. Sci. Hungar. 131962 p. 299-314, 315-342, 343-364; 141963 p. 31-42, 43-63, 65-78, 241-250, 251-268. Zbl0111.04506MR146156
  12. [KNA] Knapowski ( S.) et Turan ( P.).- Further developments in the comparative prime number theory,I-VIII, Acat Arith.91964 p. 23-40; 101964 p. 293-313; 111965 p. 115-127, 147-161, 193-202; 121966 p. 85-96; 211972 p. 193-201. Zbl0134.27702MR182616
  13. [LAN] Landau ( E.).- Uber einige ältere Vermutungen and Behauptungen in der Primzahtheorie I, resp. II, Math. Zeitschr.., t. 1, 1978, p. 1-124 resp. 213-219. JFM46.0263.02
  14. [LEE] Leech ( J.). — Note on the distribution of prime numbers, J.London Math. Soc., t. 32, 1957, p. 56-58. Zbl0086.03501MR83001
  15. [PIN] Bentz ( H.J.) et Pintz ( J.).- Quadratic residues and the distribution of primes numbers, Monat sh. Math., t. 90, 1980 n°2, p. 91-100. Zbl0431.10027MR595317
  16. [SHA] Shanks ( D.).- Quadratic residues and the distribution of primes, Math. Tables Aids Comput, t. 13, 1952, p. 272-284. Zbl0097.03001MR108470
  17. [SPI] Spira ( R.). - Calculation of Dirichlet L functions, Math. Comp., t. 3, 1969, p. 489-498. Zbl0182.07001MR247742
  18. [STA] Stark ( H.M.).-A problem in comparative prime number theory, Acta Arithmetica, t. XVIII, 1971, p. 311-320. Zbl0228.10027MR289452

NotesEmbed ?

top

You must be logged in to post comments.