Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques

Guy Robin

Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)

  • Volume: 8, Issue: 2, page 159-173
  • ISSN: 0240-2963

How to cite

top

Robin, Guy. "Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1986-1987): 159-173. <http://eudml.org/doc/73193>.

@article{Robin1986-1987,
author = {Robin, Guy},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {distribution of primes in arithmetic progressions; asymptotic estimate; Shanks conjecture; Euler function; Brent conjecture; generalized Riemann hypothesis},
language = {fre},
number = {2},
pages = {159-173},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques},
url = {http://eudml.org/doc/73193},
volume = {8},
year = {1986-1987},
}

TY - JOUR
AU - Robin, Guy
TI - Irrégularités dans la distribution des nombres premiers dans les progressions arithmétiques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 159
EP - 173
LA - fre
KW - distribution of primes in arithmetic progressions; asymptotic estimate; Shanks conjecture; Euler function; Brent conjecture; generalized Riemann hypothesis
UR - http://eudml.org/doc/73193
ER -

References

top
  1. [AND] Anderson ( R.B.) et Stark ( H.M.). — Oscillation theorems. — Lectures notes n°899, Analytic number theory, 1980. Zbl0472.10044MR654520
  2. [BEN] Bentz ( H.J.). — Discrepancies in the Distribution of Prime Numbers, Journ. of number theory, t. 15, 1982, p. 252-274. Zbl0489.10042MR675189
  3. [BRE] Brent ( R.P.). — Irregularities in the distribution of primes and twin primes, Math. of Comp., t. 29, Numb. 129,Janv., 1975, p. 43 -56. Zbl0295.10002MR369287
  4. [CHE] Chen ( W.W.L.).- On the error term of the prime number theorem and the difference between the number of primes in the residue classes modulo4, J.Lond. Math. Soc.(2), t. 23, 1981, p. 24-40. Zbl0452.10041MR602236
  5. [DAV] Davenport ( H.).—Multiplicative number theory. — Springer Verlag, 1967. Zbl0159.06303
  6. [ELL] Ellison ( J.). — Les nombres premiers. — HermannParis. Actual. Scien. et Ind. n°1366, 1975. Zbl0313.10001MR417077
  7. [GRO] Grosswald ( E.).- Oscillation theorems. Conf. on the theory of arithmetic functions. — SpringerLecture Notes251, 1971. Zbl0228.10026MR332685
  8. [HAR1] Hardy ( G.H.) et Littlewood ( J.E.).-Contributions to the theory of the Riemann Zeta function and the theory of the distribution of primes, Acta Math, t. 41, 1917, p. 119-196. Zbl46.0498.01JFM46.0498.01
  9. [HAR2] Hardy ( G.H.) et Wright ( E.M.).- An introduction to the theory of numbers. Oxford, 1960. Zbl0086.25803MR67125
  10. [HAS] Haselgrove ( C.B.) et Davies ( D.).- The evaluation of Dirichlet L functions, Proc. Roy. Soc. Ser.A, t. 264, 1961, p. 122-132. Zbl0109.03102MR136052
  11. [KNA] Knapowski ( S.) et Turan ( P.).- Comparative prime number theory,I-VIII, Acta Math. Acad. Sci. Hungar. 131962 p. 299-314, 315-342, 343-364; 141963 p. 31-42, 43-63, 65-78, 241-250, 251-268. Zbl0111.04506MR146156
  12. [KNA] Knapowski ( S.) et Turan ( P.).- Further developments in the comparative prime number theory,I-VIII, Acat Arith.91964 p. 23-40; 101964 p. 293-313; 111965 p. 115-127, 147-161, 193-202; 121966 p. 85-96; 211972 p. 193-201. Zbl0134.27702MR182616
  13. [LAN] Landau ( E.).- Uber einige ältere Vermutungen and Behauptungen in der Primzahtheorie I, resp. II, Math. Zeitschr.., t. 1, 1978, p. 1-124 resp. 213-219. JFM46.0263.02
  14. [LEE] Leech ( J.). — Note on the distribution of prime numbers, J.London Math. Soc., t. 32, 1957, p. 56-58. Zbl0086.03501MR83001
  15. [PIN] Bentz ( H.J.) et Pintz ( J.).- Quadratic residues and the distribution of primes numbers, Monat sh. Math., t. 90, 1980 n°2, p. 91-100. Zbl0431.10027MR595317
  16. [SHA] Shanks ( D.).- Quadratic residues and the distribution of primes, Math. Tables Aids Comput, t. 13, 1952, p. 272-284. Zbl0097.03001MR108470
  17. [SPI] Spira ( R.). - Calculation of Dirichlet L functions, Math. Comp., t. 3, 1969, p. 489-498. Zbl0182.07001MR247742
  18. [STA] Stark ( H.M.).-A problem in comparative prime number theory, Acta Arithmetica, t. XVIII, 1971, p. 311-320. Zbl0228.10027MR289452

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.