Comments on the completeness of order complements and on the Prüfer numbers

Labros Dokas; John Stabakis

Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)

  • Volume: 10, Issue: 1, page 65-73
  • ISSN: 0240-2963

How to cite

top

Dokas, Labros, and Stabakis, John. "Comments on the completeness of order complements and on the Prüfer numbers." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.1 (1989): 65-73. <http://eudml.org/doc/73225>.

@article{Dokas1989,
author = {Dokas, Labros, Stabakis, John},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {completion of an order structure; MacNeille complement; Prüfer numbers; chain extensions},
language = {eng},
number = {1},
pages = {65-73},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Comments on the completeness of order complements and on the Prüfer numbers},
url = {http://eudml.org/doc/73225},
volume = {10},
year = {1989},
}

TY - JOUR
AU - Dokas, Labros
AU - Stabakis, John
TI - Comments on the completeness of order complements and on the Prüfer numbers
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 1
SP - 65
EP - 73
LA - eng
KW - completion of an order structure; MacNeille complement; Prüfer numbers; chain extensions
UR - http://eudml.org/doc/73225
ER -

References

top
  1. [1] Dokas ( L.).- Certains complétés des ensembles ordonnés munit d'opérations. Complété de KRASNER, C.R.Acad.Paris, t. 256, 1963, p. 3937-39. Zbl0158.01605MR160736
  2. [2] Erne ( M.). — Posets isomorphic to their extensions, Order, t. 2, 1985, p. 199-210. Zbl0575.06003MR815865
  3. [3] Fuchs ( L.). - Infinite Abelian Groups, Tomes I, II, Academic PressN. YorkLondon1973. Zbl0209.05503MR349869
  4. [4] Redei ( L.).- Algebra., Pergamon Press.Oxford, 1967. Zbl0191.00502
  5. [5] Stratigopoulos ( D.), Stabakis ( J.).— Sur les ensembles ordonnés (f*-coupes), C.R.Acad.Paris, t. 285, 1977, p. 81-84. Zbl0362.06006MR441733

NotesEmbed ?

top

You must be logged in to post comments.