Structures holomorphiquement projectives III. Structures plates et invariantes sur des variétés homogènes
Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)
- Volume: 10, Issue: 2, page 171-191
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMozgawa, Witold. "Structures holomorphiquement projectives III. Structures plates et invariantes sur des variétés homogènes." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (1989): 171-191. <http://eudml.org/doc/73229>.
@article{Mozgawa1989,
author = {Mozgawa, Witold},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {G-structure; Cartan connection; HP-structures; homogeneous space; homomorphisms of Lie algebras},
language = {fre},
number = {2},
pages = {171-191},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Structures holomorphiquement projectives III. Structures plates et invariantes sur des variétés homogènes},
url = {http://eudml.org/doc/73229},
volume = {10},
year = {1989},
}
TY - JOUR
AU - Mozgawa, Witold
TI - Structures holomorphiquement projectives III. Structures plates et invariantes sur des variétés homogènes
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 171
EP - 191
LA - fre
KW - G-structure; Cartan connection; HP-structures; homogeneous space; homomorphisms of Lie algebras
UR - http://eudml.org/doc/73229
ER -
References
top- [Ad] Ado I.D..— The representation of Lie algebras by matrices, Uspehi. Mat. Nauk (N.S.)2, N°6 (22), 1947, 159-173. MR27753
- [Ag] Agaooka Y.— Invariant flat projective structures on homogeneous spaces, Hokkaido Math. J., XI2, 1982, 125-172. Zbl0495.53045MR666751
- [Ca] Cartan E.— Sur les variétés à connexion projective, Bull. Soc. Math. France, 52, 1924, 205-241. Zbl50.0500.02JFM50.0500.02
- [Jw] Iwahori N.— On real irreducible representations of Lie algebras, Nagoya Math. J., 14, 1959, 59-83. Zbl0101.02401MR102534
- [Ja1] Jacobson N.- Structure and automorphisms of semi-simple Lie groups in the large, Ann. of Math., 40, 1939, 755-763. Zbl0023.30204MR264JFM65.1131.01
- [Ja2] Jacobson N.- Lie algebras, Dover Publications Inc.New-York, 1970. Zbl0121.27504MR559927
- [Ko1] Kobayashi S.— Canonical forms on frame bundles of higher order contact, Proc. Symposia in Pure Math. Vol. 3. Diff. Geom. A.M.S., 1961, 186-193. Zbl0109.40601MR126810
- [Ko, Och] Kobayashi S., Ochiai T.— Holomorphic projective structures on compact complex surfaces, Math. Ann., 249, 1980, 75-94. Zbl0412.32026MR575449
- [Ko, Na] Kobayashi S., Nagano T. - On projective connections, J. Math. Mech., 13, 1964, 215-235. Zbl0117.39101MR159284
- [Ma, Ok] Matsushima H., Okamoto K.— Non-existence of torsion free flat connections on a real semi-simple Lie group, Hiroshima Math. J.9, 1979, 59-60. Zbl0411.53006MR529327
- [Mo1] Mozgawa W.— Homomorphically projective structures I. The connections, An. Stiint. Univ. "Al.I. Cuza" Iasi, XXX, I, 1984'5, 55-68. Zbl0584.53020MR800153
- [Mo2] Mozgawa W.— Holomorphically projective structures II. The transgressed classes, Rend Circ. Nat. Palermo, XXXIV, 1985, 192-201. Zbl0599.53033MR814034
- [Och] Ochiai T.— Geometry associated with semi-simple flat homogeneous spaces, Trans. Amer. Math. Soc., 152, 1970, 159- 193. Zbl0205.26004MR284936
- [Se] Serre J.P..— Algèbres de Lie semi-simples complexes, W.A. Benjamin, Inc.New-York, 1966. Zbl0144.02105MR215886
- [Su, Wi] Sulanke R., Wintgen P. — Differentialgeometrie und Faserbündel, VEB Deutscher Verlag der Wissenschaften, Berlin1972. Zbl0327.53020MR413153
- [Szy] Szybiak A.— Grassmannian connections, Ann. Univ. Mariae Curie - Sklodowska, XXVIII, 1974, 57-78. Zbl0363.53018MR415532
- [Wa] Wang H.C.- On invariant connections over a principal fibre bundle, Nagoya Math. J., 13, 1958, 1-19. Zbl0086.36502MR107276
- [We] Wells R.O.- Differential Analysis on Complex Manifolds, GTM n°65, Springer Verlag1979. Zbl0435.32004MR608414
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.