Géométrie des variétés invariantes d'un difféomorphisme axiome A et transversalité forte

Ana Gascon

Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)

  • Volume: 10, Issue: 2, page 291-324
  • ISSN: 0240-2963

How to cite

top

Gascon, Ana. "Géométrie des variétés invariantes d'un difféomorphisme axiome A et transversalité forte." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (1989): 291-324. <http://eudml.org/doc/73234>.

@article{Gascon1989,
author = {Gascon, Ana},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {dynamical systems; invariant manifolds; axiom A diffeomorphism; strong transversality condition; geodesic curvature},
language = {fre},
number = {2},
pages = {291-324},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Géométrie des variétés invariantes d'un difféomorphisme axiome A et transversalité forte},
url = {http://eudml.org/doc/73234},
volume = {10},
year = {1989},
}

TY - JOUR
AU - Gascon, Ana
TI - Géométrie des variétés invariantes d'un difféomorphisme axiome A et transversalité forte
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 291
EP - 324
LA - fre
KW - dynamical systems; invariant manifolds; axiom A diffeomorphism; strong transversality condition; geodesic curvature
UR - http://eudml.org/doc/73234
ER -

References

top
  1. [B] Belitskii ( G.R.).— Equivalence and normal forms of germs of smooth mappings, Russian Math. Surweys.33 : 1, 1978, P. 107-177, de Uspekhi Mat. Nauk.33 : 1, 1978, p. 95-155. Zbl0398.58009MR490708
  2. [C] Gascon ( A.). - Géométrie des Courbes Invariantes d'un Difféomorphisme, Thèse 3ième cycle, Univ. de Dijon, 1984. 
  3. [CL] Cascon ( A.) and Langevin ( R.). — A Labyrinth and Other Ways to Lose One's Way., Singularities and Dynamical Systems, editor SN Pnevmatikos, North Holland, 1985. Zbl0558.58023MR806180
  4. [GH] Guchenheimer ( J.) and Holmes ( P.). — Non linear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer. Zbl0515.34001
  5. [H] Hartman ( P.). - On local homeomorphisms of Euclidean Spaces, Bol. Soc. Math. Mexicana25, 1960, p. 220-221. Zbl0127.30202MR141856
  6. [HP] Hirsh ( M.) and Pugh ( C.). - Stable Manifolds and Hyperbolic sets, Global Analysis14 (Proced. Am. Math. Soc., Providence RI1970). Zbl0215.53001MR271991
  7. [HPPS] Hirsh ( M.), Palis ( J.), Pugh ( C.) and Shub ( M.). — Neighborhoods of Hyperbolic sets, Inventiones Math.91970. Zbl0191.21701MR262627
  8. [L] Langevin ( R.). — Vers une classification des difféomorphismes de Morse-Smale, en préparation. 
  9. [M] de MELO ( W.).— Moduli of Stability of two-dimensional Diffeormorphisms, Topology19, 1980, p. 9-21. Zbl0447.58025MR559473
  10. [NP] Newhouse ( S.) and Palis ( J.).- Cycles and Bifurcation Theory, Astérisque31, 1976. Zbl0322.58009MR516408
  11. [P] Palis ( J.). — On Morse-Smale Dynamical Systems, Topology8, 1969. Zbl0189.23902
  12. [P2] Palis ( J.). — A differentiable Invariant of Topological Conjugary and Moduli of Stability, Astérisque51, 1978, p. 335-346. Zbl0396.58015
  13. [PL] Plykin ( R.V.). — Sources and Sinks of A-Diffeomorphisms of SurfacesMath. URSS Sbornik23, 1974, n°2. Zbl0324.58013
  14. [PT] Palis ( J.) and Takens ( F.). — Hyperbolicity and the creation of Homoclinic Orbits, Pré-Publication IMPA. Zbl0641.58029
  15. [S] Shub ( M.). — Stabilité Globale des Systèmes DynamiquesAstérique58, 1978. Zbl0396.58014MR513592

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.