Géométrie des variétés invariantes d'un difféomorphisme axiome A et transversalité forte
Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)
- Volume: 10, Issue: 2, page 291-324
- ISSN: 0240-2963
Access Full Article
topHow to cite
topGascon, Ana. "Géométrie des variétés invariantes d'un difféomorphisme axiome A et transversalité forte." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (1989): 291-324. <http://eudml.org/doc/73234>.
@article{Gascon1989,
author = {Gascon, Ana},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {dynamical systems; invariant manifolds; axiom A diffeomorphism; strong transversality condition; geodesic curvature},
language = {fre},
number = {2},
pages = {291-324},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Géométrie des variétés invariantes d'un difféomorphisme axiome A et transversalité forte},
url = {http://eudml.org/doc/73234},
volume = {10},
year = {1989},
}
TY - JOUR
AU - Gascon, Ana
TI - Géométrie des variétés invariantes d'un difféomorphisme axiome A et transversalité forte
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 291
EP - 324
LA - fre
KW - dynamical systems; invariant manifolds; axiom A diffeomorphism; strong transversality condition; geodesic curvature
UR - http://eudml.org/doc/73234
ER -
References
top- [B] Belitskii ( G.R.).— Equivalence and normal forms of germs of smooth mappings, Russian Math. Surweys.33 : 1, 1978, P. 107-177, de Uspekhi Mat. Nauk.33 : 1, 1978, p. 95-155. Zbl0398.58009MR490708
- [C] Gascon ( A.). - Géométrie des Courbes Invariantes d'un Difféomorphisme, Thèse 3ième cycle, Univ. de Dijon, 1984.
- [CL] Cascon ( A.) and Langevin ( R.). — A Labyrinth and Other Ways to Lose One's Way., Singularities and Dynamical Systems, editor SN Pnevmatikos, North Holland, 1985. Zbl0558.58023MR806180
- [GH] Guchenheimer ( J.) and Holmes ( P.). — Non linear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer. Zbl0515.34001
- [H] Hartman ( P.). - On local homeomorphisms of Euclidean Spaces, Bol. Soc. Math. Mexicana25, 1960, p. 220-221. Zbl0127.30202MR141856
- [HP] Hirsh ( M.) and Pugh ( C.). - Stable Manifolds and Hyperbolic sets, Global Analysis14 (Proced. Am. Math. Soc., Providence RI1970). Zbl0215.53001MR271991
- [HPPS] Hirsh ( M.), Palis ( J.), Pugh ( C.) and Shub ( M.). — Neighborhoods of Hyperbolic sets, Inventiones Math.91970. Zbl0191.21701MR262627
- [L] Langevin ( R.). — Vers une classification des difféomorphismes de Morse-Smale, en préparation.
- [M] de MELO ( W.).— Moduli of Stability of two-dimensional Diffeormorphisms, Topology19, 1980, p. 9-21. Zbl0447.58025MR559473
- [NP] Newhouse ( S.) and Palis ( J.).- Cycles and Bifurcation Theory, Astérisque31, 1976. Zbl0322.58009MR516408
- [P] Palis ( J.). — On Morse-Smale Dynamical Systems, Topology8, 1969. Zbl0189.23902
- [P2] Palis ( J.). — A differentiable Invariant of Topological Conjugary and Moduli of Stability, Astérisque51, 1978, p. 335-346. Zbl0396.58015
- [PL] Plykin ( R.V.). — Sources and Sinks of A-Diffeomorphisms of SurfacesMath. URSS Sbornik23, 1974, n°2. Zbl0324.58013
- [PT] Palis ( J.) and Takens ( F.). — Hyperbolicity and the creation of Homoclinic Orbits, Pré-Publication IMPA. Zbl0641.58029
- [S] Shub ( M.). — Stabilité Globale des Systèmes DynamiquesAstérique58, 1978. Zbl0396.58014MR513592
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.