Convergence des martingales pluri-sous-harmoniques vectorielles à deux indices

Mohamed Daher

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 1, page 25-38
  • ISSN: 0240-2963

How to cite

top

Daher, Mohamed. "Convergence des martingales pluri-sous-harmoniques vectorielles à deux indices." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.1 (1992): 25-38. <http://eudml.org/doc/73292>.

@article{Daher1992,
author = {Daher, Mohamed},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {analytic Radon-Nikodym property; a.s. convergence theorem for pluri- subharmonic martingales; Doob martingale convergence theorem},
language = {fre},
number = {1},
pages = {25-38},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Convergence des martingales pluri-sous-harmoniques vectorielles à deux indices},
url = {http://eudml.org/doc/73292},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Daher, Mohamed
TI - Convergence des martingales pluri-sous-harmoniques vectorielles à deux indices
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 1
SP - 25
EP - 38
LA - fre
KW - analytic Radon-Nikodym property; a.s. convergence theorem for pluri- subharmonic martingales; Doob martingale convergence theorem
UR - http://eudml.org/doc/73292
ER -

References

top
  1. [1] Bu ( S.) .— Deux remarques sur la propriété de Radon-Nikodym analytique, Ann. Fac. Sci. Toulouse V, Série Math., XI, n° 2 (1990) pp. 79-89. Zbl0731.46006MR1191712
  2. [2] Bu ( S.) et Schachermayer ( W.) .— Approximation of Jensen measures by image measures under holomorphic functions and applications (à paraître) (1988). Zbl0758.46014
  3. [3] Bukhvalov ( A.V.) et Danilevich ( A.A.) .— Boundary properties of analytic and harmonic functions with values in Banach spaces, Math. Notes, 31 (1982) pp. 203-214. English Translations : Math. Notes, 31 (1982) pp. 104-110. Zbl0496.30029MR649004
  4. [4] Davis ( W.), Garling ( D.) et Tomczak-Jaegermann ( N.) .— The complex convexity of quasi-normed linear spaces, J. Funct. Analysis, 55, n° 1 (janv. 1984). Zbl0552.46012MR733036
  5. [5] Diestel ( J.) et Uhl ( J.J.) .— Vector measures, Math. Surveys, 15A.M.S. (1977). Zbl0369.46039MR453964
  6. [6] Dowling ( P.M.) .— Representable operators and the analytic Radon-Nikodym property in Banach spaces, Proc. Royal Irish Acad., 85A (1985). Zbl0607.46016MR845538
  7. [7] Dowling ( P.M.) .— The analytic Radon-Nikodym property in Lebesgue Bochner functions spaces, Proc. Amer. Math. Soc., 99, n° 1 (1987) pp. 119-122 Zbl0636.46031MR866440
  8. [8] Durett ( R.) .— Brownian motion and martingale in analysis, Wadsworth (1984). Zbl0554.60075
  9. [9] Edgar ( G.A.) .— Analytic martingale convergence, J. Funct. Analysis, 69, n° 2 (1986). Zbl0605.60050MR865224
  10. [10] Etter ( D.Q.) .— Vector-valued Analytic Functions, T.A.M.S.119 (1965). Zbl0135.16205MR188750
  11. [11] Garling ( D.J.H.) .— On martingales with values in complex Banach spaces, Math. Proc. Cambridge Phil. Soc., 104, n° 2 (1988) pp. 399-406. Zbl0685.46028MR948923
  12. [12] Ghoussoub ( N.) et Maurey ( B.) .— Plurisubharmonicmartingales and barriers in complex quasi-Banach spaces, Ann. Ins. Fourier, 39 (1989) pp. 1007-1060. Zbl0678.46013MR1036341
  13. [13] Hardy ( G.H.) et Littlewood ( J.E.) .— A maximal theorem with functiontheoretic applications, Acta Math., 54 (1930) pp. 81-116. JFM56.0264.02
  14. [14] Rudin ( W.) .— Fonction theory in polydics, Benjamin, New-York (1969). Zbl0177.34101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.