Some new existence results for the variable density Navier-Stokes equations
Enrique Fernández-Cara; Francisco Guillén
Annales de la Faculté des sciences de Toulouse : Mathématiques (1993)
- Volume: 2, Issue: 2, page 185-204
- ISSN: 0240-2963
Access Full Article
topHow to cite
topFernández-Cara, Enrique, and Guillén, Francisco. "Some new existence results for the variable density Navier-Stokes equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.2 (1993): 185-204. <http://eudml.org/doc/73318>.
@article{Fernández1993,
author = {Fernández-Cara, Enrique, Guillén, Francisco},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {nonconstant viscosity; existence; Dirichlet boundary conditions},
language = {eng},
number = {2},
pages = {185-204},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Some new existence results for the variable density Navier-Stokes equations},
url = {http://eudml.org/doc/73318},
volume = {2},
year = {1993},
}
TY - JOUR
AU - Fernández-Cara, Enrique
AU - Guillén, Francisco
TI - Some new existence results for the variable density Navier-Stokes equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1993
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 2
SP - 185
EP - 204
LA - eng
KW - nonconstant viscosity; existence; Dirichlet boundary conditions
UR - http://eudml.org/doc/73318
ER -
References
top- [1] Antonzev ( S.A.) and Kazhikhov ( A.V.) .— Mathematical study of flows of nonhomogeneous fluids, Lectures at the University of Nobosibirsk (U.S.S.R.), 1973 (in russian).
- [2] Di Perna ( R.) and Lions ( P.-L.) .— Ordinary differential equations transport theory and Sobolev spaces, Invent. Math.98 (1989), pp. 511-547. Zbl0696.34049MR1022305
- [3] Fernández-Cara ( E.) and Guillén ( F.) .- The existence of nonhomogeneous, viscous and incompressible flow in unbounded domains, Comm. P.D.E.17 (7 & 8) (1992), pp. 1253-1265. Zbl0767.35058
- [4] Fiszon ( W.) and Zajaczkowski ( W.M.) .— Existence and uniqueness of solutions of the initial boundary value problem for the flow of a barotropic viscous fluid global in time, Arch. Mech.35 (1983), pp. 517-532. Zbl0559.76060MR765944
- [5] Girault ( V.) and Raviart ( P.A.) . - Finite element methods for Navier-Stokes equations, Springer- Verlag, Berlin (1986). Zbl0585.65077MR851383
- [6] Guillén ( F.) . — Thesis, University of Sevilla (1992).
- [7] Kazhikhov ( A.V.) . — Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk.216 (1974), pp. 1008-1010.
- [8] Kufner ( A.) and al. .— Function Spaces, Noordhoff International PublishingLeyden (1977). Zbl0364.46022MR482102
- [9] Ladyzhenskaya ( O.A.) .— The mathematical theory of viscous incompressible flow, Gordon & Breach, New York (1969). Zbl0184.52603
- [10] Ladyzhenskaya ( O.A.) and Solonnikov ( V.A.) .— Unique solvablity of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Soviet. Math.9 (1978), pp. 697-749. Zbl0401.76037
- [11] Lions ( J.-L.) . — Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthiers-Villars, Paris (1969). Zbl0189.40603MR259693
- [12] Lions ( J.-L.) . — On some problems connected with Navier-Stokes equations, In "Nonlinear Evolution Equations", M.C. Crandall, ed. Academic Press, New York (1978). Zbl0499.35090MR513812
- [13] Lukaszewicz ( G.) .— An existence theorem for compressible viscous and heat conducting fluids, Math. Meth. Appl. Sci.6 (1984), pp. 234-247. Zbl0567.76072MR751743
- [14] Okamoto ( H.) .— On the equation of nonstationary stratified fluid motion: uniqueness and existence of solutions, J. Fac. Sci. Univ. Tokyo, Sect. 1A Math.30 (1984), pp. 615-643. Zbl0596.76119MR731521
- [15] Padula ( M.) .— An existence theorem for nonhomogeneous incompressible fluids, Rend. Circ. Mat. Palermo (4), 31 ( 1982), pp. 119-124. Zbl0485.76025MR664401
- [16] Padula ( M.) .- On the existence and uniqueness of nonhomogeneous motions in exterior domains, Math. Z.203 (1990), pp. 581-604. Zbl0694.76016MR1044066
- [17] Simon ( J.) . — Existencia de solución del problema de Navier-Stokes con densidad variable, Lectures in the University of Sevilla (1989).
- [18] Simon ( J.) .— Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure, SIAM J. Math. Anal.21, n° 5 (1990), pp. 1093-1117. Zbl0702.76039MR1062395
- [19] Témam ( R.) .— Navier-Stokes evaluations. Theory and numerical analysis, North-Holland, Amsterdam (1977). Zbl0383.35057MR609732
- [20] Valli ( A.) and Zajacszkowski ( W.M.) .— Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys.103 (1986), pp. 259-296. Zbl0611.76082
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.