Prime factorization of integral Cayley octaves

Hans Peter Rehm

Annales de la Faculté des sciences de Toulouse : Mathématiques (1993)

  • Volume: 2, Issue: 2, page 271-289
  • ISSN: 0240-2963

How to cite

top

Peter Rehm, Hans. "Prime factorization of integral Cayley octaves." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.2 (1993): 271-289. <http://eudml.org/doc/73322>.

@article{PeterRehm1993,
author = {Peter Rehm, Hans},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Cayley-Dickson algebra; unique prime factorization for integral octaves; algebraic proof of Jacobi's formula; sums of eight squares},
language = {eng},
number = {2},
pages = {271-289},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Prime factorization of integral Cayley octaves},
url = {http://eudml.org/doc/73322},
volume = {2},
year = {1993},
}

TY - JOUR
AU - Peter Rehm, Hans
TI - Prime factorization of integral Cayley octaves
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1993
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 2
SP - 271
EP - 289
LA - eng
KW - Cayley-Dickson algebra; unique prime factorization for integral octaves; algebraic proof of Jacobi's formula; sums of eight squares
UR - http://eudml.org/doc/73322
ER -

References

top
  1. [1] Van Der Blij ( F.) and Springer ( T.A.) .— The arithmetics of octaves and the group G2, Proc. Nederl. Akad. Wet.1959, pp. 406-418. Zbl0089.25803MR152555
  2. [2] Coxeter ( H.S.M.) .— Integral Cayley numbers, Duke math. J.13 (1946), pp. 561-578. Zbl0063.01004MR19111
  3. [3] Hurwitz ( A.) . — Über die Zahlentheorie der Quaternionen, Math. Werke, Bd. 2, pp. 303-330. JFM27.0162.01
  4. [4] Jacobi ( C.B.) Ges. Werke, Bd. 1. 
  5. [5] Lamont ( P.J.C.) .— The number of Cayley integers of given norm, Proc. Edinburgh Math. Soc.25 (1982). Zbl0458.12001MR648907
  6. [6] Pall ( G.) and Taussky ( O.) .— Factorization of Cayley numbers, J. Number Theory2 (1970), pp. 74-90. Zbl0212.06602MR255514
  7. [7] Rankin ( R.A.) . — A certain class of multiplicative functions, Duke Math. J.13 (1946), pp. 281-306. Zbl0061.07708MR18683
  8. [8] Schafer ( R.D.) .— An Introduction to Nonassociative Algebras, Academic Press, New York and London (1966). Zbl0145.25601MR210757
  9. [9] Zorn ( M.) .— Alternativkörper und quadratische Systeme, Abh. Math. Sem. Hamburg Univ.9 (1933), pp. 393-402. Zbl0007.05403JFM59.0154.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.