On a theorem of Enriques - Swinnerton-Dyer

Alexei N. Skorobogatov

Annales de la Faculté des sciences de Toulouse : Mathématiques (1993)

  • Volume: 2, Issue: 3, page 429-440
  • ISSN: 0240-2963

How to cite

top

Skorobogatov, Alexei N.. "On a theorem of Enriques - Swinnerton-Dyer." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.3 (1993): 429-440. <http://eudml.org/doc/73327>.

@article{Skorobogatov1993,
author = {Skorobogatov, Alexei N.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {existence of rational point; projective plane with four points in general position blown-up; Grassmannian variety},
language = {eng},
number = {3},
pages = {429-440},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On a theorem of Enriques - Swinnerton-Dyer},
url = {http://eudml.org/doc/73327},
volume = {2},
year = {1993},
}

TY - JOUR
AU - Skorobogatov, Alexei N.
TI - On a theorem of Enriques - Swinnerton-Dyer
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1993
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 3
SP - 429
EP - 440
LA - eng
KW - existence of rational point; projective plane with four points in general position blown-up; Grassmannian variety
UR - http://eudml.org/doc/73327
ER -

References

top
  1. [1] Colliot-Thélène ( J.-L.) and Sansuc ( J.-J.) .— La descente sur les variétés rationnelles, II, Duke Math. J.54 (1987), pp. 375-492. Zbl0659.14028MR899402
  2. [2] Dolgachev ( I.) and Ortland ( D.) .— Point sets in projectives spaces and theta functions, Astérisque165 (1988). Zbl0685.14029MR1007155
  3. [3] Enriques ( F.) . — Sulle irrazionalità da cui puo farsi dipendere la risoluzione d'un equazione algebrica, f(x, y, z) = 0 con funzioni razionali di due parametri, Math. Ann.49 (1897), pp. 1-23. Zbl28.0559.02JFM28.0559.02
  4. [4] Gelfand ( I.M.) and Serganova ( V.V.) .— Combinatorial geometries and torus strata on homogeneous compact manifolds, Uspekhi Mat. Nauk. (Russian) 42:2 (1987), pp. 107-133; I.M. Gelfand. Coll. Papers, SpringerV-III (1989), pp. 926-958. Zbl0629.14035MR898623
  5. [5] Hartshorne ( R.) - Algebraic geometry, Springer (1977). Zbl0367.14001MR463157
  6. [6] Lang ( S.) .- Some applications of the local uniformisation theorem, Amer. J. Math.76 (1954), pp. 362-374. Zbl0058.27201MR62722
  7. [7] Manin ( Yu.I.) .— Cubic forms, North-Holland, 2nd edition (1986). Zbl0582.14010MR833513
  8. [8] Mumford ( D.) and Fogarty ( J.) .- Geometric invariant theory, Springer, 2nd edition. (1982). Zbl0504.14008MR719371
  9. [9] Nishimura ( H.) .- Some remark on rational points, Mem. Coll. Sci. Kyoto, Ser A, 29 (1955), pp. 189-192. Zbl0068.14802MR95851
  10. [10] Serre ( J.-P.) .- Cohomologie galoisienne, SpringerLect. Notes in Math.5 (1964). Zbl0136.02801MR1324577
  11. [11] Swinnerton-Dyer ( H.P.F.) .— Rational points on del Pezzo surfaces of degree 5, In: 5th Nordic Summer School in Math. (1970), pp. 287-290. Zbl0275.14013MR376684
  12. [12] Weil ( A.) .- Abstract versus classical algebraic geometry, Proc. Int. Congr. Math. 1954, Amsterdam, Vol. 3 (1956), pp. 550-558. Zbl0073.37303MR92196

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.