Points de hauteur bornée et géométrie des variétés

Emmanuel Peyre

Séminaire Bourbaki (2000-2001)

  • Volume: 43, page 323-344
  • ISSN: 0303-1179

How to cite

top

Peyre, Emmanuel. "Points de hauteur bornée et géométrie des variétés." Séminaire Bourbaki 43 (2000-2001): 323-344. <http://eudml.org/doc/110294>.

@article{Peyre2000-2001,
author = {Peyre, Emmanuel},
journal = {Séminaire Bourbaki},
keywords = {heights; Fano varieties},
language = {fre},
pages = {323-344},
publisher = {Société Mathématique de France},
title = {Points de hauteur bornée et géométrie des variétés},
url = {http://eudml.org/doc/110294},
volume = {43},
year = {2000-2001},
}

TY - JOUR
AU - Peyre, Emmanuel
TI - Points de hauteur bornée et géométrie des variétés
JO - Séminaire Bourbaki
PY - 2000-2001
PB - Société Mathématique de France
VL - 43
SP - 323
EP - 344
LA - fre
KW - heights; Fano varieties
UR - http://eudml.org/doc/110294
ER -

References

top
  1. [Ar] S.J. Arakelov — Theory of intersections on the arithmetic surface, Proceedings of the international congress of mathematicians, Vol. 1 (Vancouver, 1974), Canad. Math. Congress, Montréal, 1975, pp. 405-408. Zbl0351.14003MR466150
  2. [Ba] V.V. Batyrev — The cone of effective divisors of threefolds, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), Contemp. Math., vol. 131, Part 3, Amer. Math. Soc., Providence, 1992, pp. 337-352. Zbl0781.14027MR1175891
  3. [BM] V.V. Batyrev & Y.I. Manin — Sur le nombre des points rationnels de hauteur bornée des variétés algébriques, Math. Ann.286 (1990), 27-43. Zbl0679.14008MR1032922
  4. [BT1] V.V. Batyrev & Y. Tschinkel — Rational points of bounded height on compactifications of anisotropic tori, Internat. Math. Res. Notices12 (1995), 591-635. Zbl0890.14008MR1369408
  5. [BT2] _, Height zeta functions of toric varieties, J. Math. Sci.82 (1996), n° 1, 3220-3239. Zbl0915.14013MR1423638
  6. [BT3] _, Rational points on some Fano cubic bundles, C. R. Acad. Sci. Paris Sér. I Math.323 (1996), 41-46. Zbl0879.14007MR1401626
  7. [BT4] _, Manin's conjecture for toric varieties, J. Algebraic Geom.7 (1998), n° 1, 15-53. Zbl0946.14009MR1620682
  8. [BT5] _, Tamagawa numbers of polarized algebraic varieties, Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 299-340. Zbl0926.11045MR1679843
  9. [Bil] H. Billard - Propriétés arithmétiques d'une famille de surfaces K3, Compositio Math.108 (1997), n° 3, 247-275. Zbl0959.11031MR1473849
  10. [Bir] B.J. Birch — Forms in many variables, Proc. Roy. Soc. London265A (1962), 245-263. Zbl0103.03102MR150129
  11. [BGS] J.-B. Bost, H. Gillet, & C. Soulé — Heights of projective varieties and positive Green forms, J. Amer. Math. Soc.7 (1994), 903-1027. Zbl0973.14013MR1260106
  12. [Bo] D. Bourqui — Fonction zêta des hauteurs des surfaces de Hirzebruch dans le cas fonctionnel, J. of Number Theory94 (2002), 343-358. Zbl1006.11032MR1916278
  13. [Bre1] R. de la Bretèche - Nombre de points de hauteur bornée sur les surfaces de Del Pezzo de degré 5, Duke Math. J.113 (2002), 421-464. Zbl1054.14025MR1909606
  14. [Bre2] _, Compter des points d'une variété torique, J. Number theory87 (2001), 315-331. Zbl1020.11045MR1824152
  15. [Bro] N. Broberg — Rational points on cubic surfaces, Rational points on algebraic varieties, Progress in Math., vol. 199, Birkhäuser, Basel, 2001, 13-35. Zbl1080.14517
  16. [CLT1] A. Chambert-Loir & Y. Tschinkel — Points of bounded height on equivariant compactifications of vector groups, I, Compositio Math.124 (2000), n° 1, 65-93. Zbl0963.11033MR1797654
  17. [CLT2] _, Points of bounded height on equivariant compactifications of vector groups, II, J. Number Theory85 (2000), n° 2, 172-188. Zbl0963.11034MR1802710
  18. [CLT3] _, On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math.148 (2002), 421-452. Zbl1067.11036MR1906155
  19. [CLT4] _, Torseurs arithmétiques et espaces fibrés, Rational points on algebraic varieties, Progress in Math., vol. 199, Birkhäuser, Basel, 2001, 37-70. Zbl1001.14005MR1875170
  20. [CLT5] _, Fonctions zêta des hauteurs des espaces fibrés, Rational points on algebraic varieties, Progress in Math., vol. 199, Birkhäuser, Basel, 2001, 71-115. Zbl1077.14524MR1875171
  21. [CTS] J.-L. Colliot-Thélène ET J.-J. Sansuc — La descente sur les variétés rationnelles, Journées de géométrie algébrique d'Angers (1979) (A. Beauville, ed.), Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 223-237. Zbl0451.14018MR605344
  22. [CTSSD] J.-L. Colliot-Thélène, A.N. Skorobogatov, & H.P.F. Swinnerton-Dyer — Double fibres and double covers : paucity of rational points, Acta Arith.79 (1997), n° 2, 113-135. Zbl0863.14011MR1438597
  23. [Co] D. Cox — The homogeneous coordinate ring of a toric variety, J. Algebraic Geom.4 (1995), n° 1, 17-50. Zbl0846.14032MR1299003
  24. [Del] T. Delzant — Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France116 (1988), 315-339. Zbl0676.58029MR984900
  25. [Fa] G. Faltings — Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983), n° 3, 349-366. Zbl0588.14026MR718935
  26. [FMT] J. Franke, Y.I. Manin, & Y. Tschinkel — Rational points of bounded height on Fano varieties, Invent. Math.95 (1989), 421-435. Zbl0674.14012MR974910
  27. [Go] R. Godement — Introduction à la théorie de Langlands, Séminaire Bourbaki 19-ème année, 1966/67, n° 321. Réédition, Collection Hors Série vol. 10, Société Mathématique de France, 1995, p. 115-144. Zbl0216.15001MR1610464
  28. [HB] D.R. Heath-Brown — Counting rational points on cubic surfaces, Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 13-30. Zbl0926.11046MR1679837
  29. [La] S. Lang — Number Theory III, diophantine geometry, Encyclopaedia of Math. Sciences, vol. 60, Springer-Verlag, Berlin, 1991. Zbl0744.14012MR1112552
  30. [Lan] R.P. Langlands — On the functional equations satisfied by Eisenstein series, Lecture Notes in Math., vol. 544, Springer-Verlag, Berlin, Heidelberg and New York, 1976. Zbl0332.10018MR579181
  31. [Ma] Y.I. Manin — Notes on the arithmetic of Fano threefolds, Compositio Math.85 (1993), n° 1, 37-55. Zbl0780.14022MR1199203
  32. [Mc] D. Mckinnon — Counting rational points on K3 surfaces, J. of number theory84 (2000), n° 1, 49-62. Zbl1019.14013MR1782261
  33. [MP] A.S. Merkurjev & I.A. Panin — K-theory of algebraic tori and toric varieties, K-Theory12 (1997), n° 2, 101-143. Zbl0882.19002MR1469139
  34. [MW] C. Moeglin & J.-L. Waldspurger — Décomposition spectrale et séries d'Eisenstein, une paraphrase de l'écriture, Progress in Math., vol. 113, Birkhäuser, Basel, 1994. Zbl0794.11022MR1261867
  35. [Né1] A. Néron — L'arithmétique sur les variétés algébriques (d'après A. Weil), Séminaire Bourbaki 4-ème année, 1951/52, n° 66. Réédition, Collection Hors Série vol. 2, Société Mathématique de France, 1995, p. 167-173. MR1609225
  36. [Né2] _, Quasi-fonctions et hauteurs sur les variétés abéliennes, Ann. of Math.82 (1965), 249-331. Zbl0163.15205MR179173
  37. [Pe] E. Peyre — Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J.79 (1995), n° 1, 101-218. Zbl0901.14025MR1340296
  38. [Sa] P. Salberger — Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 91-258. Zbl0959.14007MR1679841
  39. [Sc] S.H. Schanuel — Heights in number fields, Bull. Soc. Math. France107 (1979), 433-449. Zbl0428.12009MR557080
  40. [Sch] W.M. Schmidt — Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height, Duke Math. J.35 (1968), 327-339. Zbl0172.06304MR224562
  41. [Se] J-P.. Serre - Lectures on the Mordell-Weil theorem, Aspects of Mathematics, vol. E15, Vieweg, Braunschweig, Wiesbaden, 1989. Zbl0676.14005MR1757192
  42. [Sk] A.N. Skorobogatov — On a theorem of Enriques—Swinnerton-Dyer, Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), n° 3, 429-440. Zbl0811.14020MR1260765
  43. [SS-D] J.B. Slater & H.P.F. Swinnerton-Dyer — Counting points on cubic surfaces, I, Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 1-12. Zbl0969.11027MR1679836
  44. [ST1] M. Strauch & Y. Tschinkel — Height zeta functions of twisted products, Math. Res. Lett.4 (1997), 273-282. Zbl0918.11036MR1453059
  45. [ST2] _, Height zeta functions of toric bundles over flag varieties, Selecta Math. (N.S.)5 (1999), n° 3, 325-396. Zbl1160.14302MR1723811
  46. [Th] J.L. Thunder — Asymptotic estimates for rational points of bounded height on flag varieties, Compositio Math.88 (1993), 155-186. Zbl0806.11030MR1237919
  47. [Va] R.C. Vaughan — The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge-New York, 1981. Zbl0455.10034MR628618
  48. [We] A. Weil — Arithmetic on algebraic varieties, Ann. of Math. (2) 53 (1951), 412-444. Zbl0043.27002MR42169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.