Fonctions convexes et logarithmes de polynômes à coefficients positifs

Bernard Lacolle

Annales de la Faculté des sciences de Toulouse : Mathématiques (1994)

  • Volume: 3, Issue: 1, page 91-133
  • ISSN: 0240-2963

How to cite

top

Lacolle, Bernard. "Fonctions convexes et logarithmes de polynômes à coefficients positifs." Annales de la Faculté des sciences de Toulouse : Mathématiques 3.1 (1994): 91-133. <http://eudml.org/doc/73332>.

@article{Lacolle1994,
author = {Lacolle, Bernard},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {approximation; generalized polynomials; convex function; conjugate function; localization of the roots},
language = {fre},
number = {1},
pages = {91-133},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Fonctions convexes et logarithmes de polynômes à coefficients positifs},
url = {http://eudml.org/doc/73332},
volume = {3},
year = {1994},
}

TY - JOUR
AU - Lacolle, Bernard
TI - Fonctions convexes et logarithmes de polynômes à coefficients positifs
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1994
PB - UNIVERSITE PAUL SABATIER
VL - 3
IS - 1
SP - 91
EP - 133
LA - fre
KW - approximation; generalized polynomials; convex function; conjugate function; localization of the roots
UR - http://eudml.org/doc/73332
ER -

References

top
  1. [1] Domb ( C.) et Green ( M.S.) .— Phase transitions and critical phenomena, Vol. 1, Academic Press, 1972. 
  2. [2] Israël ( R.B.) .— Convexity in the theory of lattice gases, Princeton Series in Physics, 1979. Zbl0399.46055MR517873
  3. [3] Lacolle ( B.) .— Sur certaines méthodes de calcul de la Physique Statistique, Thèse de Mathématiques, Université de Grenoble1984. 
  4. [4] Lacolle ( B.) .— Approximation d'une fonction convexe lipschitzienne et de ses singularités, M2AN, Vol. 19, 2 (1985). Zbl0581.65015MR802596
  5. [5] Laurent ( P.-J.) .— Approximation Optimisation, Hermann, 1972. Zbl0238.90058MR467080
  6. [6] Marden ( M.) .— The geometry of the zeros of a polynomial in a complex variable, Amer. Math. Soc., Mathematical Survey Number III (1949). Zbl0038.15303MR31114
  7. [7] Robert ( R.) .— Convergence de fonctionnelles convexes, J. Math. Anal. Appl.45 (1974), pp. 533-555. Zbl0299.46014MR352927
  8. [8] Rockafellar ( R.T.) .— Convex Analysis, Princetown University Press, New Jersey, 1970. Zbl0193.18401MR274683
  9. [9] Ruelle ( D.) .— Statistical Mechanics, The Mathematic Physics Monograph Series, 1969. Zbl0177.57301MR289084
  10. [10] Salinetti ( G.) et Wets ( R.J.-B.) .— On the relation between Two Types of Convergence for Convex Functions, J. Math. Anal. Appl.60 (1977), pp. 211-226. Zbl0359.54005MR479398

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.