Non-uniformly hyperbolic billiards

Roberto Markarian

Annales de la Faculté des sciences de Toulouse : Mathématiques (1994)

  • Volume: 3, Issue: 2, page 223-257
  • ISSN: 0240-2963

How to cite

top

Markarian, Roberto. "Non-uniformly hyperbolic billiards." Annales de la Faculté des sciences de Toulouse : Mathématiques 3.2 (1994): 223-257. <http://eudml.org/doc/73334>.

@article{Markarian1994,
author = {Markarian, Roberto},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {plane billiards; chaos; non-uniform hyperbolicity},
language = {eng},
number = {2},
pages = {223-257},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Non-uniformly hyperbolic billiards},
url = {http://eudml.org/doc/73334},
volume = {3},
year = {1994},
}

TY - JOUR
AU - Markarian, Roberto
TI - Non-uniformly hyperbolic billiards
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1994
PB - UNIVERSITE PAUL SABATIER
VL - 3
IS - 2
SP - 223
EP - 257
LA - eng
KW - plane billiards; chaos; non-uniform hyperbolicity
UR - http://eudml.org/doc/73334
ER -

References

top
  1. [1] Arnold ( V.I.) .— Mathematical Methods of Classifical Mechanics, New York - Heidelberg - Berlin, Springer1978 (original Ed. 1974). Zbl0386.70001MR690288
  2. [2] Baldwin ( P.R.) .— Soft Billiard Systems, Physica29 D (1988), pp. 321-342. Zbl0644.58010MR939279
  3. [3] Bunimovich ( L.A.) . — On billiards close to dispersing, Math USSR Sb.23, n° 1 (1974), pp. 45-67. Zbl0309.58018MR342677
  4. [4] Bunimovich ( L.A.) .— On ergodic properties of nowhere dispersing billiards, Commun. Math. Phys.65 (1979), pp. 295-312. Zbl0421.58017MR530154
  5. [5] Bunimovich ( L.A.) .— The Stochastic dynamics of rays on resonators, Izv. Vyssh. Uchebn. Zaved Radofiz28 (1985), pp. 1601-1602 (in Russian). Zbl0598.46025MR827372
  6. [6] Bunimovich ( L.A.) .— Many dimensional nowhere dispersing billiards with chaotic behavior, PhysicaD53 (1988), 58-64. Zbl0679.58030MR984610
  7. [7] Chernov ( N.I.) . — Structure of transversal leaves in multidimensional semidispersing billiards, Funct. An. its Appl.16, n° 1 (1982), pp. 270-280. Zbl0552.28015
  8. [8] Cornfeld ( I.P.), Fomin ( S.V.) and Sinai ( Ya.G.) .— Ergodic Theory, Berlin - Heidelberg - New York, Springer, 1982 (original Ed. 1980). Zbl0493.28007MR832433
  9. [9] Donnay ( V.) .— Using Integrability to Produce Chaos: Billiards with Positive Entropy, Commun. Math. Phys.141 (1991), pp. 225-257. Zbl0744.58041MR1133266
  10. [10] Katok ( A.) and Strelcyn ( J.-M.) in collaboration with Ledrapier ( F.) and Przytyki ( F.) .— Smooth maps with singularities. Invariant Manifolds. Entropy and Billiards, Lecture Notes in Mathematics1222, Berlin - Heidelberg - New York, Springer (1986). Zbl0658.58001MR872698
  11. [11] Kramli ( A.), Simayi ( N.) and Szász ( D.) . — The K-Property of Three Billiard balls, Annals of Math.133 (1991), pp. 37-72. Zbl0719.58023MR1087345
  12. [12] Kubo ( I.) .— Perturbed billiard Systems, I. The ergodicity of the motion of a particle in a compound central field, Nagoya Math. J.61 (1976), pp. 1-57. Zbl0348.58008MR433510
  13. [13] Ledrappier ( F.) and Young ( L.S.) .— The metric entropy of diffeomorphisms, Part I, Annals of Math.122 (1985), pp. 509-539. Zbl0605.58028MR819556
  14. [14] Lewowicz ( J.) .— Lyapunov functions and topological stability, J. Differ. Equations38 (1980), pp. 192-209. Zbl0418.58012MR597800
  15. [15] Lewowicz ( J.) . — Lyapunov functions and stability of geodesic flows, In Lecture Notes in Mathematics1007, Berlin - Heidelberg - New York, Springer (1981), pp. 463-479. Zbl0514.58031MR730282
  16. [16] Lewowicz ( J.) .— Persistance in expansive systems, Ergodic Theory Dyn. Syst.3 (1983), pp. 567-578. Zbl0529.58021MR753924
  17. [17] Lewowicz ( J.) and Lima De Sa ( E.) .— Analytical Models of pseudo Anosov maps, Ergodic Theory Dyn. Syst.6 (1986), pp. 385-392. Zbl0608.58035MR863201
  18. [18] Markarian ( R.) . — Billiards with Pesin region of Measure One, Commun. Math. Phys.118 (1988), pp. 87-97. Zbl0653.58015MR954676
  19. [19] Pesin ( Ya.B.) .— Familles of invariant manifolds corresponding to non zero. Characteristic exponents, Math. USSR Izvestija10 (1976), pp. 1261-1305. Zbl0383.58012
  20. [20] Pesin ( Ya.B.) and Sinai ( Ya.G.) .— Hyperbolicity and Stochasticity of Dynamical Systems, Soviet Scientific Reviews Section C, Mathematical Physics Review4 (1981), pp. 53-115. Zbl0561.58038MR659267
  21. [21] Sinai ( Ya.G.) .— On the foundations of the ergodic hypothesis for a dynamical system of Statistical Mechanics, Soviet Math. Dokl.4 (1963), pp. 1818-1822. MR214727
  22. [22] Sinai ( Ya.G.) .— Dynamical Systems with elastic reflections, Russian Math. Surv.25, n° 1 (1970), pp. 137-189. Zbl0263.58011MR274721
  23. [23] Sinai ( Ya.G.) .— Development of Krylov ideas. In Works on the foundations of Statistical Physics by N. S. Krylov, Princeton University1979 (original Ed. 1977). MR551057
  24. [24] Sinai ( Ya.G.) and Chernov ( N.I.) .— Ergodic Properties of certain systems of two dimensional discs and three dimensional balls, Russ. Math. Surv.42, n° 3 (1987), pp. 181-207. Zbl0644.58007MR896880
  25. [25] Wojtkowski ( M.) .— Principles for the design of billiards with nonvanishing Lyapunov exponents, Commun. Math. Phys.105 (1986), pp. 391-414. Zbl0602.58029MR848647

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.