The structure of the critical set in the general mountain pass principle
Annales de la Faculté des sciences de Toulouse : Mathématiques (1994)
- Volume: 3, Issue: 3, page 345-362
- ISSN: 0240-2963
Access Full Article
topHow to cite
topFang, Guangcai. "The structure of the critical set in the general mountain pass principle." Annales de la Faculté des sciences de Toulouse : Mathématiques 3.3 (1994): 345-362. <http://eudml.org/doc/73339>.
@article{Fang1994,
author = {Fang, Guangcai},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {mountain pass theorem; critical set; minimax principle},
language = {eng},
number = {3},
pages = {345-362},
publisher = {UNIVERSITE PAUL SABATIER},
title = {The structure of the critical set in the general mountain pass principle},
url = {http://eudml.org/doc/73339},
volume = {3},
year = {1994},
}
TY - JOUR
AU - Fang, Guangcai
TI - The structure of the critical set in the general mountain pass principle
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1994
PB - UNIVERSITE PAUL SABATIER
VL - 3
IS - 3
SP - 345
EP - 362
LA - eng
KW - mountain pass theorem; critical set; minimax principle
UR - http://eudml.org/doc/73339
ER -
References
top- [AR] Ambrosetti ( A.) and Rabinowitz ( P.H.) .— Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), pp. 349-381. Zbl0273.49063MR370183
- [GP] Ghoussoub ( N.) and Preiss ( D.) .— A general mountain pass principle for locating and classifying critical points, Analyse Nonlinéaire6, n° 5 (1989), pp. 321-330. Zbl0711.58008MR1030853
- [Ku] Kuratowski ( K.) .— Topology, Vol. II, Academic Press, New York and London, 1968. MR259835
- [PS1] Pucci ( P.) and Serrin ( J.) .— Extensions of the mountain pass theorem, J. Funct. Analysis. 59 (1984), pp. 185-210. Zbl0564.58012MR766489
- [PS2] Pucci ( P.) and Serrin ( J.) .— A mountain pass theorem, J. Diff. Eq.60 (1985), pp. 142-149. Zbl0585.58006MR808262
- [PS3] Pucci ( P.) and Serrin ( J.) .— The structure of the critical set in the mountain pass theorem, Trans. A.M.S.91, n° 1 (1987), pp. 115-132. Zbl0611.58019MR869402
- [H] Hofer ( H.) . — A geometric description of the neighbourhood of a critical point given by the mountain pass theorem, J. London Math. Soc.31 (1985), pp. 566-570. Zbl0573.58007MR812787
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.