Covariant star-products

Mohsen Masmoudi

Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)

  • Volume: 4, Issue: 1, page 77-85
  • ISSN: 0240-2963

How to cite

top

Masmoudi, Mohsen. "Covariant star-products." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.1 (1995): 77-85. <http://eudml.org/doc/73346>.

@article{Masmoudi1995,
author = {Masmoudi, Mohsen},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {star-product; quantization; deformation; symplectic manifold},
language = {eng},
number = {1},
pages = {77-85},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Covariant star-products},
url = {http://eudml.org/doc/73346},
volume = {4},
year = {1995},
}

TY - JOUR
AU - Masmoudi, Mohsen
TI - Covariant star-products
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 1
SP - 77
EP - 85
LA - eng
KW - star-product; quantization; deformation; symplectic manifold
UR - http://eudml.org/doc/73346
ER -

References

top
  1. [1] Bayen ( F.), Flato ( M.), Fronsdal ( C.), Lichnerowicz ( A.) and Sternheimer ( D.) .— Deformation and Quantization, Ann. of Phys.111 (1978), pp. 61-151. Zbl0377.53025MR496157
  2. [2] Arnal ( D.), Cortet ( J.-C.), Molin ( P.) and Pinczon ( G.) .— Covariance and Geometrical invariance in * quatization, J. Math. Phys.24, n° 2 (1983), pp. 276-283. Zbl0515.22015MR692302
  3. [3] Lecomte ( P.B.A.) and De Wilde ( M.) .— Existence of star-product and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifold, Lett. Math. Phys.7 (1983), pp. 487-496. Zbl0526.58023MR728644
  4. [4] Omori ( H.), Maeda ( Y.) and Yoshioka ( A.) .— Weyl manifolds and deformation quantization, To be published in Advances in Mathematics. Zbl0734.58011MR1319611
  5. [5] De Wilde ( M.) and Lecomte ( P.B.A.) .— Existence of star products revisited, Preprint Université de Liège. Zbl0776.53023
  6. [6] Lichnerowicz ( A.) .— Déformations d'algèbres associées à une variété symplectique (les *ν-produits,)Ann. Inst. Fourier32 (1981), pp. 157-209. Zbl0465.53025MR658948
  7. [7] Neroslavsky ( O.M.) and Vlassov ( A.T.) .— Sur les déformations de l'algèbre des fonctions d'une variété symplectique, C.R. Acad. Sc.Paris, Serie I, 292 (1981), pp. 71-73. Zbl0471.58034MR610151
  8. [8] Karosev ( M.V.) and Maslov ( V.P.) .— Pseudodifferential operators and the canonical operator in general symplectic manifolds, Izv. Akad. Nauk Ser. Mat.47 (1983), 999-1029. Zbl0538.58035MR718414
  9. [9] Gerstenhaber ( M.) .— On the deformations of rings and algebras, Ann. of Math.79 (1964), pp. 59-103. Zbl0123.03101MR389978
  10. [10] Pedersen ( N.V.) . — On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications, I, Math. Annalen281 (1988), pp. 633-669. Zbl0629.22004MR958263
  11. [11] Gutt ( S.) . — An explicit *-product on the cotangent bundle of a Lie group, Lett. in Math. Phys.7 (1983), pp. 249-258. Zbl0522.58019MR706215

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.