On the Symplectic Structure of Coadjoint Orbits of (Solvable) Lie Groups and Applications. I.
Mathematische Annalen (1988)
- Volume: 281, Issue: 4, page 633-670
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topPedersen, Niels Vigand. "On the Symplectic Structure of Coadjoint Orbits of (Solvable) Lie Groups and Applications. I.." Mathematische Annalen 281.4 (1988): 633-670. <http://eudml.org/doc/164443>.
@article{Pedersen1988,
author = {Pedersen, Niels Vigand},
journal = {Mathematische Annalen},
keywords = {coadjoint orbit; real polarization; symplectic manifold; quantizable functions; homogeneous line bundle; differential operators; canonical symplectic form; Weyl quantization; integral orbits},
number = {4},
pages = {633-670},
title = {On the Symplectic Structure of Coadjoint Orbits of (Solvable) Lie Groups and Applications. I.},
url = {http://eudml.org/doc/164443},
volume = {281},
year = {1988},
}
TY - JOUR
AU - Pedersen, Niels Vigand
TI - On the Symplectic Structure of Coadjoint Orbits of (Solvable) Lie Groups and Applications. I.
JO - Mathematische Annalen
PY - 1988
VL - 281
IS - 4
SP - 633
EP - 670
KW - coadjoint orbit; real polarization; symplectic manifold; quantizable functions; homogeneous line bundle; differential operators; canonical symplectic form; Weyl quantization; integral orbits
UR - http://eudml.org/doc/164443
ER -
Citations in EuDML Documents
top- Mohsen Masmoudi, Covariant star-products
- Didier Arnal, Béchir Dali, Déformations polarisées d'algèbres sur les orbites coadjointes des groupes exponentiels
- Mitya Boyarchenko, Sergei Levendorski, Beyond the classical Weyl and Colin de Verdière’s formulas for Schrödinger operators with polynomial magnetic and electric fields
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.