On the Novikov complex for rational Morse forms
Andrei Vladimirovich Pazhitnov
Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)
- Volume: 4, Issue: 2, page 297-338
- ISSN: 0240-2963
Access Full Article
topHow to cite
topPazhitnov, Andrei Vladimirovich. "On the Novikov complex for rational Morse forms." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.2 (1995): 297-338. <http://eudml.org/doc/73353>.
@article{Pazhitnov1995,
author = {Pazhitnov, Andrei Vladimirovich},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Novikov complex; Morse function; chain complex; Morse forms; de Rham cohomology; simple homotopy type},
language = {eng},
number = {2},
pages = {297-338},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the Novikov complex for rational Morse forms},
url = {http://eudml.org/doc/73353},
volume = {4},
year = {1995},
}
TY - JOUR
AU - Pazhitnov, Andrei Vladimirovich
TI - On the Novikov complex for rational Morse forms
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 2
SP - 297
EP - 338
LA - eng
KW - Novikov complex; Morse function; chain complex; Morse forms; de Rham cohomology; simple homotopy type
UR - http://eudml.org/doc/73353
ER -
References
top- [1] Farber ( M.) .— The exactness of Novikov inequalities, Funktional Anal. i Pril.19, No 1 (1985), pp. 49-59. English Transl. in Functional Anal. Appl.19 (1985). Zbl0603.58030MR783706
- [2] Kervaire ( M.) .— Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv.40, No 1 (1965), pp. 31-42. Zbl0135.41503MR189048
- [3] Cerf ( J.) .— La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Maht. I.H.E.S.39 (1970), pp. 7-172. Zbl0213.25202MR292089
- [4] Munkres ( I.) .— Elementary differential topology, Ann. Math. Studies54, Princeton, New Jersey, Princeton University Press (1966). Zbl0161.20201MR198479
- [5] Milnor ( J.) .— Lectures on the h-cobordism theorem, Princeton University Press (1965). Zbl0161.20302MR190942
- [6] Milnor ( J.) .— Whitehead torsion, Bull. Amer. Math. Soc.72 (1966), pp. 358-426. Zbl0147.23104MR196736
- [7] Novikov ( S.P.) .— The Hamilton formalism and a multivalued analog of Morse theory, Uspekhi Mat. Nauk37, No 5 (227) (1982), pp. 3-49. English translation in Russian Math. Surveys37 (1982). Zbl0571.58011MR676612
- [8] Pazhitnov ( A.V.) . — On the sharpness of Novikov type inequalities of manifold with free abelian fundamental groups, Mat. Sbornik. 180, No 11 (1989), pp. 1486-1532. English translation Math. USSR Sbornik68, No 2 (1991). Zbl0708.57013MR1034426
- [9] Pazhitnov ( A.V.) .— On the Novikov complex for rational Morse forms, Preprint of Odense University12 (October 1991).
- [10] Pazhitnov ( A.V.) .— Surgery on the Novikov complex, Preprint of the Nantes University, 1993. MR1404410
- [11] Peixoto ( M.M.) . — On an approximation theorem of Kupka and Smale, Journal of differential equations3 (1966), pp. 214-227. Zbl0153.40901MR209602
- [12] Sharko ( V.V.) .— Stable algebra of Morse theory, Izv. AN SSSR3 (1990), pp. 607-632. Zbl0712.58019MR1072697
- [13] Sikorav ( J.- Cl.) .— Homologie de Novikov et formes de Morse, Preprint Orsay, 1987.
- [14] Sikorav ( J.- Cl.) .— Homologie, associée à une fonctionnelle (d'après A. Floer), Séminaire Bourbaki733 (1990-91). Zbl0754.57011MR1157840
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.