On the Novikov complex for rational Morse forms

Andrei Vladimirovich Pazhitnov

Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)

  • Volume: 4, Issue: 2, page 297-338
  • ISSN: 0240-2963

How to cite

top

Pazhitnov, Andrei Vladimirovich. "On the Novikov complex for rational Morse forms." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.2 (1995): 297-338. <http://eudml.org/doc/73353>.

@article{Pazhitnov1995,
author = {Pazhitnov, Andrei Vladimirovich},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Novikov complex; Morse function; chain complex; Morse forms; de Rham cohomology; simple homotopy type},
language = {eng},
number = {2},
pages = {297-338},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the Novikov complex for rational Morse forms},
url = {http://eudml.org/doc/73353},
volume = {4},
year = {1995},
}

TY - JOUR
AU - Pazhitnov, Andrei Vladimirovich
TI - On the Novikov complex for rational Morse forms
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 2
SP - 297
EP - 338
LA - eng
KW - Novikov complex; Morse function; chain complex; Morse forms; de Rham cohomology; simple homotopy type
UR - http://eudml.org/doc/73353
ER -

References

top
  1. [1] Farber ( M.) .— The exactness of Novikov inequalities, Funktional Anal. i Pril.19, No 1 (1985), pp. 49-59. English Transl. in Functional Anal. Appl.19 (1985). Zbl0603.58030MR783706
  2. [2] Kervaire ( M.) .— Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv.40, No 1 (1965), pp. 31-42. Zbl0135.41503MR189048
  3. [3] Cerf ( J.) .— La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Maht. I.H.E.S.39 (1970), pp. 7-172. Zbl0213.25202MR292089
  4. [4] Munkres ( I.) .— Elementary differential topology, Ann. Math. Studies54, Princeton, New Jersey, Princeton University Press (1966). Zbl0161.20201MR198479
  5. [5] Milnor ( J.) .— Lectures on the h-cobordism theorem, Princeton University Press (1965). Zbl0161.20302MR190942
  6. [6] Milnor ( J.) .— Whitehead torsion, Bull. Amer. Math. Soc.72 (1966), pp. 358-426. Zbl0147.23104MR196736
  7. [7] Novikov ( S.P.) .— The Hamilton formalism and a multivalued analog of Morse theory, Uspekhi Mat. Nauk37, No 5 (227) (1982), pp. 3-49. English translation in Russian Math. Surveys37 (1982). Zbl0571.58011MR676612
  8. [8] Pazhitnov ( A.V.) . — On the sharpness of Novikov type inequalities of manifold with free abelian fundamental groups, Mat. Sbornik. 180, No 11 (1989), pp. 1486-1532. English translation Math. USSR Sbornik68, No 2 (1991). Zbl0708.57013MR1034426
  9. [9] Pazhitnov ( A.V.) .— On the Novikov complex for rational Morse forms, Preprint of Odense University12 (October 1991). 
  10. [10] Pazhitnov ( A.V.) .— Surgery on the Novikov complex, Preprint of the Nantes University, 1993. MR1404410
  11. [11] Peixoto ( M.M.) . — On an approximation theorem of Kupka and Smale, Journal of differential equations3 (1966), pp. 214-227. Zbl0153.40901MR209602
  12. [12] Sharko ( V.V.) .— Stable algebra of Morse theory, Izv. AN SSSR3 (1990), pp. 607-632. Zbl0712.58019MR1072697
  13. [13] Sikorav ( J.- Cl.) .— Homologie de Novikov et formes de Morse, Preprint Orsay, 1987. 
  14. [14] Sikorav ( J.- Cl.) .— Homologie, associée à une fonctionnelle (d'après A. Floer), Séminaire Bourbaki733 (1990-91). Zbl0754.57011MR1157840

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.