A problem of minimization with relaxed energy

Rejeb Hadiji; Feng Zhou

Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)

  • Volume: 4, Issue: 3, page 579-591
  • ISSN: 0240-2963

How to cite

top

Hadiji, Rejeb, and Zhou, Feng. "A problem of minimization with relaxed energy." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.3 (1995): 579-591. <http://eudml.org/doc/73359>.

@article{Hadiji1995,
author = {Hadiji, Rejeb, Zhou, Feng},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {relaxed energy; minimization; minimizing sequence},
language = {eng},
number = {3},
pages = {579-591},
publisher = {UNIVERSITE PAUL SABATIER},
title = {A problem of minimization with relaxed energy},
url = {http://eudml.org/doc/73359},
volume = {4},
year = {1995},
}

TY - JOUR
AU - Hadiji, Rejeb
AU - Zhou, Feng
TI - A problem of minimization with relaxed energy
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 3
SP - 579
EP - 591
LA - eng
KW - relaxed energy; minimization; minimizing sequence
UR - http://eudml.org/doc/73359
ER -

References

top
  1. [B] Bethuel ( F.) . — A charaterization of maps in H1(Ω, S2) which can be approximated by smooth maps, Ann. I.H.P. Analyse nonlinéaire7 (1990), pp. 269-286. Zbl0708.58004MR1067776
  2. [BB] Bethuel ( F.) and Brezis ( H.) .— Minimisation de ∫ |∇(u - x/|x|)|2 et divers phénomènes de gapC.R. Acad. Sci.Paris310 (1990), pp. 859-864. Zbl0717.49005MR1060601
  3. [BBC] Bethuel ( F.) Brezis ( H.) and Coron ( J.-M.) .— Relaxed energies for harmonic maps in variational problems, ed. by H. Berestycki, J.-M. Coron and I. Ekeland, Birkhauser (1990). Zbl0793.58011MR1205144
  4. [BZ] Bethuel ( F.) and Zheng ( X.) .— Density of smooth functions between two manifolds in Sobolev spaces, J. Func. Anal.80 (1988), pp. 60-75. Zbl0657.46027MR960223
  5. [BC] Brezis ( H.) and Coron ( J.-M.) .— Large solutions for harmonic maps in two dimensions, Comm. Math. Phys.92 (1983), pp. 203-215. Zbl0532.58006MR728866
  6. [BCL] Brezis ( H.) Coron ( J.-M.) and Lieb ( H.), .— Harmonic maps with defects, Comm. Math. Phys.107 (1986), pp. 649-705. Zbl0608.58016MR868739
  7. [M] Morrey ( C.B.) . — The problem of Plateau on a Riemannian manifold, Ann. of Math.47 (1948), pp. 807-851. Zbl0033.39601MR27137
  8. [R] Rivière ( T.) . — Construction of a dipole, preprint. 
  9. [SU1] Schoen ( R.) and Uhlenbeck ( K.) . — A regularity theory for harmonic maps, J. Diff. Geom.17 (1982), pp. 307-335. Zbl0521.58021MR664498
  10. [SU2] Schoen ( R.) and Uhlenbeck ( K.) . — Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom.18 (1983), pp. 253-268. Zbl0547.58020MR710054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.