Sur les familles exponentielles naturelles réelles de grand-Babel

Célestin Clotaire Kokonendji

Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)

  • Volume: 4, Issue: 4, page 763-800
  • ISSN: 0240-2963

How to cite

top

Kokonendji, Célestin Clotaire. "Sur les familles exponentielles naturelles réelles de grand-Babel." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.4 (1995): 763-800. <http://eudml.org/doc/73366>.

@article{Kokonendji1995,
author = {Kokonendji, Célestin Clotaire},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {natural exponential families; variance functions; grand-Babel class},
language = {fre},
number = {4},
pages = {763-800},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Sur les familles exponentielles naturelles réelles de grand-Babel},
url = {http://eudml.org/doc/73366},
volume = {4},
year = {1995},
}

TY - JOUR
AU - Kokonendji, Célestin Clotaire
TI - Sur les familles exponentielles naturelles réelles de grand-Babel
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 4
SP - 763
EP - 800
LA - fre
KW - natural exponential families; variance functions; grand-Babel class
UR - http://eudml.org/doc/73366
ER -

References

top
  1. [1] Bar-Lev ( S.K.), Bshouty ( D.) et Enis ( P.) .— Variance functions with meromorphic means, Ann. of Proba.19 (1991), pp. 1349-1366. Zbl0735.62010MR1112420
  2. [2] Bar-Lev ( S.K.) et Enis ( P.) .— Reproducibility and natural exponential families with power variance functions, Anna. Statist.14 (1987), pp. 1507-1522. Zbl0657.62016MR868315
  3. [3] Bar-Lev ( S.K.), Enis ( P.) et Letac ( G.) .— Sampling models with admit a given general exponential family as conjugate family of priors, Ann. Statist. (à paraître) (1994). Zbl0827.62002MR1311990
  4. [4] Barndorff-Nielsen ( O.E.) .— Information and exponential families in statistical theory, Wiley, New-York (1978). Zbl0387.62011MR489333
  5. [5] Barndorff-Nielsen ( O.E.) .- Hyperbolic distributions and distributions on hyperbolae, Scand. J. Statist.5 (1978), pp. 151-157. Zbl0386.60018MR509451
  6. [6] Diaconis ( P.) et Ylvisaker ( D.) .— Conjugate priors for exponential families, Ann. Statist.7 (1979), pp. 269-281. Zbl0405.62011MR520238
  7. [7] Dieudonné ( J.) .— Infinitesimal calculus, Houghton Mifflin, Boston (1971). MR349286
  8. [8] Doney ( R.A.) .— Hitting probabilities for spectrally positive Lévy processes, J. London Math. Soc.44 (1991), pp. 566-576. Zbl0699.60061MR1149016
  9. [9] Feller ( W.) . — An introduction to probability theory and its applications, Vol. 2, Wiley, New-York (1966). Zbl0138.10207MR210154
  10. [10] Imhof ( J.P.) . — On the time spent above a level by a Brownian motion, Adv. Appl. Prob.18 (1986), pp. 1017-1018. Zbl0618.60079MR867098
  11. [11] Jeffreys ( H.) .— Theory of probability, Oxford University Press (1948). Zbl0030.16501
  12. [12] Jorgensen ( B.) .— Some properties of exponential dispersion models, Scand. J. Statist.13 (1986), pp. 187-198. Zbl0655.62010MR873073
  13. [13] Jorgensen ( B.) .— Exponential dispersion models, J. Roy. Statist. Soc. Ser. B49 (1987), pp. 127-162. Zbl0662.62078MR905186
  14. [14] Jorgensen ( B.) .— The theory of exponential dispersion models and analysis of deviance. I.M.P.A.Rio de Janeiro (1992). Zbl0983.62502MR1182990
  15. [15] Jorgensen ( B.), Letac ( G.) et Seshadri ( V.) .— Sur une propriété des familles exponentielles naturelles de variance quadratique. Canadian Jour. Statist.17 (1989), pp. 1-8. Zbl0676.62009MR1014085
  16. [16] Kokonendji ( C.C.) .— Caractérisation de fonctions variance de Seshadri des familles exponentielles sur IR, C.R. Acad. Sci.Paris. 314, série I (1992), pp. 1063-1068. Zbl0755.62022MR1168536
  17. [17] Kokonendji ( C.C.) .— Exponential families with variance functions in √ΔP(√Δ) : Seshadri's class, Test3, n° 2 (1994), pp. 99-148. Zbl0836.62015MR1365729
  18. [18] Kokonendji ( C.C.) et Seshadri ( V.) .— La méthode de Lindsay appliquée à la construction de familles exponentielles de fonctions variances de degré 4 en √m, C.R. Acad. Sci.Paris314, série I (1992), pp. 305-308. Zbl0743.62015MR1151719
  19. [19] Kokonendji ( C.C.) et Seshadri ( V.) .— The Lindsay transform of natural exponential families, Canadian Jour. Statist.22, n° 2 (1994), pp. 259-272. Zbl0811.62022MR1295692
  20. [20] Letac ( G.) . — La réciprocité des familles exponentielles naturelles sur IR, C.R. Acad. Sci.Paris, 303, série I (1986) pp. 61-64. Zbl0591.60003MR851270
  21. [21] Letac ( G.) . — The classification of natural exponential families by their variances functions, Proceeding of the 48th session of the International Statistical Institute, Vol. LIV, Book 3 (1991). 
  22. [22] Letac ( G.) .— Lectures on natural exponential families and their variance functions, I.M.P.A.Rio de Janeiro (1992). Zbl0983.62501MR1182991
  23. [23] Letac ( G.) et Mora ( M.) .— Sur les fonctions-variances des familles exponentielles sur R, C.R. Acad. Sci.Paris302, série I (1986), pp. 551-554. Zbl0591.62012MR845646
  24. [24] Letac ( G.) et Mora ( M.) .— Natural real exponential families with cubic variance functions, Ann. Statist.18 (1990), pp. 1-37. Zbl0714.62010MR1041384
  25. [25] Mora ( M.) .— Classification des fonctions-variances cubiques des familles exponentielles sur IR, C.R. Acad. Sci.Paris302, série I (1986), pp. 587-590. Zbl0613.60008MR844163
  26. [26] Morlat ( G.) . — Les lois de probabilité de Halphen, Revue de Statist. Appli.4, n° 3 (1956), pp. 21-46. 
  27. [27] Morris ( C.-N.) .— Natural exponential families with quadratic variance function, Ann. Statist.10 (1982), pp. 65-80. Zbl0498.62015MR642719
  28. [28] Prabhu ( N.U.) . — Ladder variables for a continuous time stochastic process, Z. Wahrscheinlichkeitstheorie verw. Geb.16 (1970), pp. 157-164. Zbl0193.45003MR278392

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.