Sur les familles exponentielles naturelles réelles de grand-Babel
Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)
- Volume: 4, Issue: 4, page 763-800
- ISSN: 0240-2963
Access Full Article
topHow to cite
topKokonendji, Célestin Clotaire. "Sur les familles exponentielles naturelles réelles de grand-Babel." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.4 (1995): 763-800. <http://eudml.org/doc/73366>.
@article{Kokonendji1995,
author = {Kokonendji, Célestin Clotaire},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {natural exponential families; variance functions; grand-Babel class},
language = {fre},
number = {4},
pages = {763-800},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Sur les familles exponentielles naturelles réelles de grand-Babel},
url = {http://eudml.org/doc/73366},
volume = {4},
year = {1995},
}
TY - JOUR
AU - Kokonendji, Célestin Clotaire
TI - Sur les familles exponentielles naturelles réelles de grand-Babel
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 4
SP - 763
EP - 800
LA - fre
KW - natural exponential families; variance functions; grand-Babel class
UR - http://eudml.org/doc/73366
ER -
References
top- [1] Bar-Lev ( S.K.), Bshouty ( D.) et Enis ( P.) .— Variance functions with meromorphic means, Ann. of Proba.19 (1991), pp. 1349-1366. Zbl0735.62010MR1112420
- [2] Bar-Lev ( S.K.) et Enis ( P.) .— Reproducibility and natural exponential families with power variance functions, Anna. Statist.14 (1987), pp. 1507-1522. Zbl0657.62016MR868315
- [3] Bar-Lev ( S.K.), Enis ( P.) et Letac ( G.) .— Sampling models with admit a given general exponential family as conjugate family of priors, Ann. Statist. (à paraître) (1994). Zbl0827.62002MR1311990
- [4] Barndorff-Nielsen ( O.E.) .— Information and exponential families in statistical theory, Wiley, New-York (1978). Zbl0387.62011MR489333
- [5] Barndorff-Nielsen ( O.E.) .- Hyperbolic distributions and distributions on hyperbolae, Scand. J. Statist.5 (1978), pp. 151-157. Zbl0386.60018MR509451
- [6] Diaconis ( P.) et Ylvisaker ( D.) .— Conjugate priors for exponential families, Ann. Statist.7 (1979), pp. 269-281. Zbl0405.62011MR520238
- [7] Dieudonné ( J.) .— Infinitesimal calculus, Houghton Mifflin, Boston (1971). MR349286
- [8] Doney ( R.A.) .— Hitting probabilities for spectrally positive Lévy processes, J. London Math. Soc.44 (1991), pp. 566-576. Zbl0699.60061MR1149016
- [9] Feller ( W.) . — An introduction to probability theory and its applications, Vol. 2, Wiley, New-York (1966). Zbl0138.10207MR210154
- [10] Imhof ( J.P.) . — On the time spent above a level by a Brownian motion, Adv. Appl. Prob.18 (1986), pp. 1017-1018. Zbl0618.60079MR867098
- [11] Jeffreys ( H.) .— Theory of probability, Oxford University Press (1948). Zbl0030.16501
- [12] Jorgensen ( B.) .— Some properties of exponential dispersion models, Scand. J. Statist.13 (1986), pp. 187-198. Zbl0655.62010MR873073
- [13] Jorgensen ( B.) .— Exponential dispersion models, J. Roy. Statist. Soc. Ser. B49 (1987), pp. 127-162. Zbl0662.62078MR905186
- [14] Jorgensen ( B.) .— The theory of exponential dispersion models and analysis of deviance. I.M.P.A.Rio de Janeiro (1992). Zbl0983.62502MR1182990
- [15] Jorgensen ( B.), Letac ( G.) et Seshadri ( V.) .— Sur une propriété des familles exponentielles naturelles de variance quadratique. Canadian Jour. Statist.17 (1989), pp. 1-8. Zbl0676.62009MR1014085
- [16] Kokonendji ( C.C.) .— Caractérisation de fonctions variance de Seshadri des familles exponentielles sur IR, C.R. Acad. Sci.Paris. 314, série I (1992), pp. 1063-1068. Zbl0755.62022MR1168536
- [17] Kokonendji ( C.C.) .— Exponential families with variance functions in √ΔP(√Δ) : Seshadri's class, Test3, n° 2 (1994), pp. 99-148. Zbl0836.62015MR1365729
- [18] Kokonendji ( C.C.) et Seshadri ( V.) .— La méthode de Lindsay appliquée à la construction de familles exponentielles de fonctions variances de degré 4 en √m, C.R. Acad. Sci.Paris314, série I (1992), pp. 305-308. Zbl0743.62015MR1151719
- [19] Kokonendji ( C.C.) et Seshadri ( V.) .— The Lindsay transform of natural exponential families, Canadian Jour. Statist.22, n° 2 (1994), pp. 259-272. Zbl0811.62022MR1295692
- [20] Letac ( G.) . — La réciprocité des familles exponentielles naturelles sur IR, C.R. Acad. Sci.Paris, 303, série I (1986) pp. 61-64. Zbl0591.60003MR851270
- [21] Letac ( G.) . — The classification of natural exponential families by their variances functions, Proceeding of the 48th session of the International Statistical Institute, Vol. LIV, Book 3 (1991).
- [22] Letac ( G.) .— Lectures on natural exponential families and their variance functions, I.M.P.A.Rio de Janeiro (1992). Zbl0983.62501MR1182991
- [23] Letac ( G.) et Mora ( M.) .— Sur les fonctions-variances des familles exponentielles sur R, C.R. Acad. Sci.Paris302, série I (1986), pp. 551-554. Zbl0591.62012MR845646
- [24] Letac ( G.) et Mora ( M.) .— Natural real exponential families with cubic variance functions, Ann. Statist.18 (1990), pp. 1-37. Zbl0714.62010MR1041384
- [25] Mora ( M.) .— Classification des fonctions-variances cubiques des familles exponentielles sur IR, C.R. Acad. Sci.Paris302, série I (1986), pp. 587-590. Zbl0613.60008MR844163
- [26] Morlat ( G.) . — Les lois de probabilité de Halphen, Revue de Statist. Appli.4, n° 3 (1956), pp. 21-46.
- [27] Morris ( C.-N.) .— Natural exponential families with quadratic variance function, Ann. Statist.10 (1982), pp. 65-80. Zbl0498.62015MR642719
- [28] Prabhu ( N.U.) . — Ladder variables for a continuous time stochastic process, Z. Wahrscheinlichkeitstheorie verw. Geb.16 (1970), pp. 157-164. Zbl0193.45003MR278392
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.