Sparsely totient numbers

Roger C. Baker; Glyn Harman

Annales de la Faculté des sciences de Toulouse : Mathématiques (1996)

  • Volume: 5, Issue: 2, page 183-190
  • ISSN: 0240-2963

How to cite

top

Baker, Roger C., and Harman, Glyn. "Sparsely totient numbers." Annales de la Faculté des sciences de Toulouse : Mathématiques 5.2 (1996): 183-190. <http://eudml.org/doc/73381>.

@article{Baker1996,
author = {Baker, Roger C., Harman, Glyn},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {sparsely totient numbers; largest prime divisor; estimates on exponential sums; fractional parts},
language = {eng},
number = {2},
pages = {183-190},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Sparsely totient numbers},
url = {http://eudml.org/doc/73381},
volume = {5},
year = {1996},
}

TY - JOUR
AU - Baker, Roger C.
AU - Harman, Glyn
TI - Sparsely totient numbers
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1996
PB - UNIVERSITE PAUL SABATIER
VL - 5
IS - 2
SP - 183
EP - 190
LA - eng
KW - sparsely totient numbers; largest prime divisor; estimates on exponential sums; fractional parts
UR - http://eudml.org/doc/73381
ER -

References

top
  1. [1] Baker ( R.C.) . — The greatest prime factor of the integers in an interval, Acta Arithmetica47 (1986), pp. 193-231. Zbl0553.10035MR870666
  2. [2] Baker ( R.C.) and Harman .— Numbers with a large prime factor, Acta Arith.73 (1995), pp. 119-145. Zbl0834.11037MR1358192
  3. [3] Baker ( R.C.), Harman and Rivat ( J.) .— Primes of the form [nc], J. of Number Theory, 50 (1995), pp. 261-277. Zbl0822.11062MR1316821
  4. [4] Fouvry ( E.) and Iwaniec ( H.) . — Exponential sums with monomials, J. Number Theory33 (1989), pp. 311-333. Zbl0687.10028MR1027058
  5. [5] Harman ( G.) .— On the distribution of αp modulo one, J. London Math. Soc.27 (1983), pp. 9-18. Zbl0504.10018MR686496
  6. [6] Harman ( G.) . — On sparsely totient numbers, Glasgow Math. J.33 (1991), pp. 349-358. Zbl0732.11049MR1127527
  7. [7] Iwaniec ( H.) and Laborde ( M.) .— P2 in short intervals, Ann. Inst. Fourier, Grenoble, 31 (1981), pp. 37-56. Zbl0472.10048MR644342
  8. [8] Liu ( H.-Q.) .— The greatest prime factor of the integers in an interval, Acta Arith., 65 (1993), pp. 301-328. Zbl0797.11071MR1259341
  9. [9] Masser ( D.W.) and Shiu ( P.) . — On sparsely totient numbers, Pacific J. Math.121 (1986), pp. 407-426. Zbl0538.10006MR819198
  10. [10] Wu ( J.) .— P2 dans les petits intervalles, Séminaire de Théorie des Nombres de Paris (1989-90), Birkhaüser. Zbl0743.11050MR1476739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.