P 2 in short intervals

Henryk Iwaniec; M. Laborde

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 4, page 37-56
  • ISSN: 0373-0956

Abstract

top
For any sufficiently large real number x , the interval [ x , x + x 0 , 45 ] contains at least one integer having at most two prime factors .

How to cite

top

Iwaniec, Henryk, and Laborde, M.. "$P_2$ in short intervals." Annales de l'institut Fourier 31.4 (1981): 37-56. <http://eudml.org/doc/74517>.

@article{Iwaniec1981,
abstract = {For any sufficiently large real number $x$, the interval $[x,x+x^\{0,45\}]$ contains at least one integer having at most two prime factors .},
author = {Iwaniec, Henryk, Laborde, M.},
journal = {Annales de l'institut Fourier},
keywords = {number with at most two prime factors; short intervals; Iwaniec's bilinear form of sieve remainder term; Laborde's weights},
language = {eng},
number = {4},
pages = {37-56},
publisher = {Association des Annales de l'Institut Fourier},
title = {$P_2$ in short intervals},
url = {http://eudml.org/doc/74517},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Iwaniec, Henryk
AU - Laborde, M.
TI - $P_2$ in short intervals
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 4
SP - 37
EP - 56
AB - For any sufficiently large real number $x$, the interval $[x,x+x^{0,45}]$ contains at least one integer having at most two prime factors .
LA - eng
KW - number with at most two prime factors; short intervals; Iwaniec's bilinear form of sieve remainder term; Laborde's weights
UR - http://eudml.org/doc/74517
ER -

References

top
  1. [1] A. A. BUCHSTAB, Combinatorial strengthening of the sieve method of Eratosthenes (Russian), Uspehi Math. Nauk., 22 (1967), n° 3 (135), 199-226. Zbl0199.09001
  2. [2] Jing-run CHEN, On the distribution of almost primes in an interval, Scientia Sinica, 18 (1975), 611-627. Zbl0381.10033MR56 #15584
  3. [3] Jing-run CHEN, On the distribution of almost primes in an interval (II), Scientia Sinica, 22 (1979), 253-275. Zbl0408.10030MR82d:10065
  4. [4] H. HALBERSTAM and H.-E. RICHERT, Sieve Methods, London 1974. Zbl0298.10026MR54 #12689
  5. [5] H. HALBERSTAM, D. R. HEATH-BROWN and H.-E. RICHERT, Almost-primes in short intervals, to appear. Zbl0461.10041
  6. [6] H. IWANIEC, A new form of the error term in the linear sieve, Acta Arith., 27 (1980), 307-320. Zbl0444.10038MR82d:10069
  7. [7] W. B. JURKAT and H.-E. RICHERT, An improvement of Selberg sieve method, I, Acta Arith., 11 (1965), 217-240. Zbl0128.26902MR34 #2540
  8. [8] M. LABORDE, Les sommes trigonométriques de Chen et les poids de Buchstab en théorie du crible, Thèse de 3e cycle, Université de Paris-Sud. 
  9. [9] M. LABORDE, Buchstab's sifting weights, Mathematika, 26 (1979), 250-257. Zbl0429.10028MR82m:10070
  10. [10] R. A. RANKIN, Van der Corput's method and the theory of exponent pairs, Quart. J. Oxford, (2) 6 (1955), 147-153. Zbl0065.27802MR17,240a
  11. [11] H.-E. RICHERT, Selberg's sieve with weights, Mathematika, 16 (1969), 1-22. Zbl0192.39703MR40 #119
  12. [12] E. C. TITCHMARSH, The theory of the Riemann Zeta-Function, Oxford 1951. Zbl0042.07901MR13,741c

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.