in short intervals
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 4, page 37-56
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. A. BUCHSTAB, Combinatorial strengthening of the sieve method of Eratosthenes (Russian), Uspehi Math. Nauk., 22 (1967), n° 3 (135), 199-226. Zbl0199.09001
- [2] Jing-run CHEN, On the distribution of almost primes in an interval, Scientia Sinica, 18 (1975), 611-627. Zbl0381.10033MR56 #15584
- [3] Jing-run CHEN, On the distribution of almost primes in an interval (II), Scientia Sinica, 22 (1979), 253-275. Zbl0408.10030MR82d:10065
- [4] H. HALBERSTAM and H.-E. RICHERT, Sieve Methods, London 1974. Zbl0298.10026MR54 #12689
- [5] H. HALBERSTAM, D. R. HEATH-BROWN and H.-E. RICHERT, Almost-primes in short intervals, to appear. Zbl0461.10041
- [6] H. IWANIEC, A new form of the error term in the linear sieve, Acta Arith., 27 (1980), 307-320. Zbl0444.10038MR82d:10069
- [7] W. B. JURKAT and H.-E. RICHERT, An improvement of Selberg sieve method, I, Acta Arith., 11 (1965), 217-240. Zbl0128.26902MR34 #2540
- [8] M. LABORDE, Les sommes trigonométriques de Chen et les poids de Buchstab en théorie du crible, Thèse de 3e cycle, Université de Paris-Sud.
- [9] M. LABORDE, Buchstab's sifting weights, Mathematika, 26 (1979), 250-257. Zbl0429.10028MR82m:10070
- [10] R. A. RANKIN, Van der Corput's method and the theory of exponent pairs, Quart. J. Oxford, (2) 6 (1955), 147-153. Zbl0065.27802MR17,240a
- [11] H.-E. RICHERT, Selberg's sieve with weights, Mathematika, 16 (1969), 1-22. Zbl0192.39703MR40 #119
- [12] E. C. TITCHMARSH, The theory of the Riemann Zeta-Function, Oxford 1951. Zbl0042.07901MR13,741c