Feuilletages holomorphes de codimension un sur les espaces homogènes complexes

Étienne Ghys

Annales de la Faculté des sciences de Toulouse : Mathématiques (1996)

  • Volume: 5, Issue: 3, page 493-519
  • ISSN: 0240-2963

How to cite

top

Ghys, Étienne. "Feuilletages holomorphes de codimension un sur les espaces homogènes complexes." Annales de la Faculté des sciences de Toulouse : Mathématiques 5.3 (1996): 493-519. <http://eudml.org/doc/73392>.

@article{Ghys1996,
author = {Ghys, Étienne},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Kählerian varieties; Tits filtration},
language = {fre},
number = {3},
pages = {493-519},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Feuilletages holomorphes de codimension un sur les espaces homogènes complexes},
url = {http://eudml.org/doc/73392},
volume = {5},
year = {1996},
}

TY - JOUR
AU - Ghys, Étienne
TI - Feuilletages holomorphes de codimension un sur les espaces homogènes complexes
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1996
PB - UNIVERSITE PAUL SABATIER
VL - 5
IS - 3
SP - 493
EP - 519
LA - fre
KW - Kählerian varieties; Tits filtration
UR - http://eudml.org/doc/73392
ER -

References

top
  1. [1] Bott ( R.) .— Lectures on characteristic classes and foliations, Notes by L. Conlon, Mexico 1971, Lecture Notes in Mathematics, Springer-Verlag279 (1973). Zbl0241.57010MR362335
  2. [2] Bott ( R.) et Tu ( L.W.) .— Differential forms in Algebraic Topology, Graduate text in Mathematics, Springer-Verlag82 (1982). Zbl0496.55001MR658304
  3. [3] Ghys ( E.) et Verjovsky ( A.) .— Locally free holomorphic actions of the complex affine group, Proceedings of Geometric Study of Foliations, Tokyo novembre 1993, éd. T. Mizutani et al., World ScientificSingapore (1994), pp. 201-217. MR1363727
  4. [4] Greub ( W.), Halperin ( S.) et Vanstone ( R.) .— Connections, curvature and cohomology, Academic Press3 (1976). 
  5. [5] Hector ( G.) .— Architecture des feuilletages de classe C2, 3ème rencontre de géométrie du Schnepfenried, Vol. 1, Astérique107-108 (1992), pp. 243-258. Zbl0533.57014MR753140
  6. [6] Huckleberry ( A.T.) .— Actions of groups of holomorphic transformations, in Encyclopaedia of Mathematical Sciences, Several complex variables, W. Barth et R. Narasimhan (éds), Springer-Verlag6 (1990). Zbl0744.32018MR1095091
  7. [7] Jouanolou ( J.-P.) .— Équations de Pfaff algébriques, SpringerLecture Notes in Maths. 708 (1979). Zbl0477.58002MR537038
  8. [8] Jouanolou ( J.-P.) .— Feuilles compactes des feuilletages algébriques, Math. Ann.241 (1979), pp. 69-72. Zbl0401.32013MR531151
  9. [9] Lie ( S.) .— Theorie der Transformationsgruppen, Math. Ann.6 (1880). Zbl12.0292.01JFM11.0258.02
  10. [10] Malgrange ( B.) .— Frobenius avec singularités. 1. Codimension 1, Publ. I.H.E.S.46 (1976), pp. 163-173. Zbl0355.32013MR508169
  11. [11] Milnor ( J.) . — Singular points of complex hypersurfaces, Ann. of Mathematical Studies61, Princeton University Press (1968). Zbl0184.48405MR239612
  12. [12] Montgomery ( D.) .— Simply connected homogeneous spaces, Proc. A.M.S.1 (1950), pp. 457-569. Zbl0041.36309MR37311
  13. [13] Sullivan ( D.) .— Seminar on conformal and hyperbolic geometry, Notes par M. Baker et J. Seade, I.H.E.S. (1982). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.