Codimension one foliations on complex tori
- [1] Institut de Mathématiques de Bourgogne – UMR 5584 – 9 Avenue Savary, 21078 Dijon, France
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 2, page 405-418
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBrunella, Marco. "Codimension one foliations on complex tori." Annales de la faculté des sciences de Toulouse Mathématiques 19.2 (2010): 405-418. <http://eudml.org/doc/115885>.
@article{Brunella2010,
abstract = {We prove a structure theorem for codimension one singular foliations on complex tori, from which we deduce some dynamical consequences.},
affiliation = {Institut de Mathématiques de Bourgogne – UMR 5584 – 9 Avenue Savary, 21078 Dijon, France},
author = {Brunella, Marco},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {structure theorem; singular foliations},
language = {eng},
month = {4},
number = {2},
pages = {405-418},
publisher = {Université Paul Sabatier, Toulouse},
title = {Codimension one foliations on complex tori},
url = {http://eudml.org/doc/115885},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Brunella, Marco
TI - Codimension one foliations on complex tori
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 2
SP - 405
EP - 418
AB - We prove a structure theorem for codimension one singular foliations on complex tori, from which we deduce some dynamical consequences.
LA - eng
KW - structure theorem; singular foliations
UR - http://eudml.org/doc/115885
ER -
References
top- M. Brunella, On the dynamics of codimension one foliations with ample normal bundle, Indiana Univ. Math. J. 57 (2008), 3101–3113 Zbl1170.37023MR2492227
- O. Debarre, Tores et variétés abéliennes complexes, Cours Spécialisés 6, SMF (1999) Zbl0964.14037MR1767634
- R. Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer (1998) Zbl0902.14029MR1600388
- É. Ghys, Feuilletages holomorphes de codimension un sur les espaces homogènes complexes, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), 493–519 Zbl0877.57014MR1440947
- A. Lins Neto, A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier 49 (1999), 1369–1385 Zbl0963.32022MR1703092
- B. Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften 287, Springer (1988) Zbl0627.30039MR959135
- T. Ohsawa, A reduction theorem for stable sets of holomorphic foliations on complex tori, preprint (2008) Zbl1187.32009MR2552952
- Th. Peternell, Pseudoconvexity, the Levi problem and vanishing theorems, in Several Complex Variables VII, Encyclopaedia Math. Sci. 74, Springer (1994) Zbl0811.32011MR1326622
- T. Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités Mathématiques, Hermann (1998) Zbl0910.32035MR1649358
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.