Codimension one foliations on complex tori

Marco Brunella[1]

  • [1] Institut de Mathématiques de Bourgogne – UMR 5584 – 9 Avenue Savary, 21078 Dijon, France

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 2, page 405-418
  • ISSN: 0240-2963

Abstract

top
We prove a structure theorem for codimension one singular foliations on complex tori, from which we deduce some dynamical consequences.

How to cite

top

Brunella, Marco. "Codimension one foliations on complex tori." Annales de la faculté des sciences de Toulouse Mathématiques 19.2 (2010): 405-418. <http://eudml.org/doc/115885>.

@article{Brunella2010,
abstract = {We prove a structure theorem for codimension one singular foliations on complex tori, from which we deduce some dynamical consequences.},
affiliation = {Institut de Mathématiques de Bourgogne – UMR 5584 – 9 Avenue Savary, 21078 Dijon, France},
author = {Brunella, Marco},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {structure theorem; singular foliations},
language = {eng},
month = {4},
number = {2},
pages = {405-418},
publisher = {Université Paul Sabatier, Toulouse},
title = {Codimension one foliations on complex tori},
url = {http://eudml.org/doc/115885},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Brunella, Marco
TI - Codimension one foliations on complex tori
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 2
SP - 405
EP - 418
AB - We prove a structure theorem for codimension one singular foliations on complex tori, from which we deduce some dynamical consequences.
LA - eng
KW - structure theorem; singular foliations
UR - http://eudml.org/doc/115885
ER -

References

top
  1. M. Brunella, On the dynamics of codimension one foliations with ample normal bundle, Indiana Univ. Math. J. 57 (2008), 3101–3113 Zbl1170.37023MR2492227
  2. O. Debarre, Tores et variétés abéliennes complexes, Cours Spécialisés 6, SMF (1999) Zbl0964.14037MR1767634
  3. R. Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer (1998) Zbl0902.14029MR1600388
  4. É. Ghys, Feuilletages holomorphes de codimension un sur les espaces homogènes complexes, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), 493–519 Zbl0877.57014MR1440947
  5. A. Lins Neto, A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier 49 (1999), 1369–1385 Zbl0963.32022MR1703092
  6. B. Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften 287, Springer (1988) Zbl0627.30039MR959135
  7. T. Ohsawa, A reduction theorem for stable sets of holomorphic foliations on complex tori, preprint (2008) Zbl1187.32009MR2552952
  8. Th. Peternell, Pseudoconvexity, the Levi problem and vanishing theorems, in Several Complex Variables VII, Encyclopaedia Math. Sci. 74, Springer (1994) Zbl0811.32011MR1326622
  9. T. Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités Mathématiques, Hermann (1998) Zbl0910.32035MR1649358

NotesEmbed ?

top

You must be logged in to post comments.