Diagonal Padé approximants to hyperelliptic functions

Herbert Stahl

Annales de la Faculté des sciences de Toulouse : Mathématiques (1996)

  • Volume: S5, page 121-193
  • ISSN: 0240-2963

How to cite

top

Stahl, Herbert. "Diagonal Padé approximants to hyperelliptic functions." Annales de la Faculté des sciences de Toulouse : Mathématiques S5 (1996): 121-193. <http://eudml.org/doc/73401>.

@article{Stahl1996,
author = {Stahl, Herbert},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {rational approximation; Padé approximation; spurious poles; hyperelliptic functions; Baker-Gammel-Wills conjecture},
language = {eng},
pages = {121-193},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Diagonal Padé approximants to hyperelliptic functions},
url = {http://eudml.org/doc/73401},
volume = {S5},
year = {1996},
}

TY - JOUR
AU - Stahl, Herbert
TI - Diagonal Padé approximants to hyperelliptic functions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1996
PB - Université Paul Sabatier, Institut de Mathématiques
VL - S5
SP - 121
EP - 193
LA - eng
KW - rational approximation; Padé approximation; spurious poles; hyperelliptic functions; Baker-Gammel-Wills conjecture
UR - http://eudml.org/doc/73401
ER -

References

top
  1. [BaGM] Baker ( G.A.) JR. and Graves-Morris . — Padé Approximants Parts I and Part II, Encycl. Math. Vols 13 and 14. Cambridge University Press, Cambridge (1981). 
  2. [BGW] Baker ( G. A.) JR., Gammel ( J.L.) and Wills ( J.G.).- An investigation of the applicability of the Padé approximant method, J. Math. Anal. Appl.2 (1961), pp. 405-418. Zbl0102.05902MR130093
  3. [Br] Brezinsk I ( C.). — History of Continued Fractions and Padé approximants, Series in Comp. Math.12, Springer-Verlag, Heidelberg (1991). Zbl0714.01001MR1083352
  4. [Bo] Borchardt ( C.W.).— Application des transcendantes abéliennes á la théorie des fractions continues, J. Reine Angew. Math.48 (1854), pp. 69-104. 
  5. [Ch] Chandrasehharan ( K.).— Analytic Number Theory, Springer-Verlag, Berlin ( 1968). 
  6. [Du] Dumas ( S. ).— Sur le développement des fonctions elliptiques en fractions continues, Thésis, Univ. Zürich, (1908). Zbl39.0517.01JFM39.0517.01
  7. [Go] Gonchar ( A.A.).— A local condition for single-valuedness of analytic functions, Mat. Sbornik, 89 (131) (1972); English transl. in Math. USSR Sb.18 ( 1972), pp. 151-167. Zbl0257.30039MR322144
  8. [GoRa] Gonchar ( A.A.) and Rakhmanov ( E.A.).— Equilibrium distributions and degree of rational approximation of analytic functions , Mat. Sb.134 ( 1987); English transl. in Math. USSR Sb.62 ( 1989), pp. 305-48. Zbl0663.30039MR922628
  9. [Ham] Hamburger ( H.).— Über eine Erweiterung des Stieltjesschen Momentenproblems I, II, III, Math. Ann.81 (1920). pp. 235-319, Math. Ann.82 (1921), pp. 120-164, 168-187. Zbl47.0427.04JFM47.0427.04
  10. [Ha] Halphen ( G.-H. ).— Traité des fonctions elliptiques et de leurs applications, Tome II. Gauthier-Villars, Paris ( 1888). JFM20.0434.01
  11. [Hi] Hille ( E.). — Analytic Function Theory, Ginns and Company, Boston (1962). MR201608
  12. [HuCo] Hurwitz ( A. ) and Courant ( R.).— Funktionentheorie, Springer-Verlag, Berlin ( 1929). 
  13. [Ja] Jacobi ( C.-G.-J. ).—Note sur une nouvelle application de l'analyse des functions elliptiques a l'algèbre, J. Reine Angew. Math.7 (1830), pp. 41-43. 
  14. [Kr] Krein ( M.G. ). — The ideas of P. L. Chebychev and A. A. Markov in the theory of limiting values of integrals and their further development, Amer. Math. Soc. Transl. Series12 (1959), pp. 1-121. Zbl0087.04902MR113106
  15. [La] Landkof ( N.S. ).— Foundations of Modern Potential Theory , Springer-VerlagBerlin (1972). Zbl0253.31001MR350027
  16. [Lu] Lubinsky ( D.S.). - Divergence of complex rational approximants , Pacific J. Math.108 (1983), pp. 141-153. Zbl0476.30028MR709706
  17. [Nu1] Nuttall ( J.).— The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl.31 (1970), pp. 129-140. Zbl0204.08602MR288279
  18. [Nu2] Nuttall ( J.).— Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory42 (1984), pp. 299-386. Zbl0565.41015MR769985
  19. [Pe] Perron ( O.). — Die Lehre von den Kettenbrüchen, Teubner, Stuttgard (1913). 
  20. [Po1] POMMERENKE (CH.).— Ueber die Kapazitaet ebener Kontinuen , Math. Ann.139 ( 1959), pp. 64-75. Zbl0087.07002MR114922
  21. [Po2] Pommerenke ( CH. ).— Padé approximants and convergence in capacity, J. Math. Anal. Appl.41 (1973), pp. 775-780. Zbl0256.30037MR328090
  22. [Ra] Rakhmanov ( E.A.).— On the convergence of Padé approximants in classes of holomorphic functions, Math. USSR Sb.40 (1980), pp. 149-155. Zbl0466.30033
  23. [Si] Siegel ( C.L. ). - Transzendente Zahlen, Bibliographisches Institut, Mannheim ( 1967). Zbl0167.32202MR209231
  24. [Sp] Springer ( G. ). — Introduction to Riemann Surfaces , Chelsea publ. cop.New York (1981 ). Zbl0501.30039
  25. [St1] Stahl ( H. ).— Extremal domains associated with an analytic function I, II, Complex Variables Theory Appl.4 (1985), pp. 311-324, 325-338. Zbl0542.30027MR858916
  26. [St2] Stahl ( H. ).— The structure of extremal domains associated with an analytic function, Complex Variables Theory Appl.4 (1985), pp. 339-354. Zbl0542.30029MR858917
  27. [St3] Stahl ( H. ).— The convergence of Padé approximants to functions with branch points, Submitted to J. Approx. Theory. Zbl0896.41009MR1484040
  28. [Sti] Stieltjes ( T.-J.).— Recherches sur les fractions continues , Ann. Fac. Sci. Toulouse8 (1894), pp. 1-122. MR1508159JFM25.0326.01
  29. [StTo] Stahl ( H.) and Totik ( V.).- General Orthogonal Polynomials , Encycl. Math. Vol. 43, Cambridge University Press, Cambridge, (1992). Zbl0791.33009MR1163828

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.