Interpolation by holomorphic functions in the unit ball with polynomial growth

Xavier Massaneda

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 2, page 277-296
  • ISSN: 0240-2963

How to cite

top

Massaneda, Xavier. "Interpolation by holomorphic functions in the unit ball with polynomial growth." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.2 (1997): 277-296. <http://eudml.org/doc/73421>.

@article{Massaneda1997,
author = {Massaneda, Xavier},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {extension; interpolation; holomorphic functions},
language = {eng},
number = {2},
pages = {277-296},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Interpolation by holomorphic functions in the unit ball with polynomial growth},
url = {http://eudml.org/doc/73421},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Massaneda, Xavier
TI - Interpolation by holomorphic functions in the unit ball with polynomial growth
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 2
SP - 277
EP - 296
LA - eng
KW - extension; interpolation; holomorphic functions
UR - http://eudml.org/doc/73421
ER -

References

top
  1. [1] Amar ( E.).— Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de ℂn, Can. J. Math.XXX, n° 4 (1978), pp. 711-737. Zbl0385.32014MR499309
  2. [2] Amar ( E.).— Extension de fonctions holomorphes et courants, Bull. Sci. Math.107 (1983), pp. 25-48. Zbl0543.32007MR699989
  3. [3] Berndtsson ( B.).— A formula for interpolation and division in ℂn, Math. Ann.263 (1983), pp. 399-418. Zbl0499.32013MR707239
  4. [4] Berndtsson ( B.).— Interpolating sequences for H∞ in the ball, Proc. Kon. Ned. Akad. van Wetensch. A-88 (1985), pp. 1-10. Zbl0588.32006MR783001
  5. [5] Berndtsson ( B.) and Andersson ( A.) . — Henkin Ramirez formulas with weight factors, Ann. de l'Institut Fourier32, n° 3 (1982), pp. 91-110. Zbl0466.32001MR688022
  6. [6] Bruna ( J.) and Pascuas ( D.).— Interpolation in A-∞, J. London Math. Soc.40 (1989), pp. 452-466. Zbl0652.30026MR1053614
  7. [7] Bruna ( J.) and Massaneda ( X.).— Zero sets of holomorphic functions in the unit ball with slow growth, J. Anal. Math.66 (1995), pp. 217-252. Zbl0858.32009MR1370351
  8. [8] Dautov ( S.A.) and Henkin ( G.).— Zeros of holomorphic functions of finite area and weighted estimates for solutions of the ∂-equation, Math. USSR Sb.135 (1979), pp. 449-459. Zbl0421.32001
  9. [9] Henkin ( G.) . — Continuation of bounded analytic functions from submanifolds in general position to strictly pseudoconvex domains, Maths. USSR. Izv.6 (1972), pp. 536-563. Zbl0255.32008MR308444
  10. [10] Koremblum ( B.).— An extension of the Nevanlinna theory, Acta Math.135 (1975), pp. 187-219. Zbl0323.30030
  11. [11] Massaneda ( X.).— A-p-interpolation in the unit ball, J. London Math. Soc.52 (1995), pp. 391-401. Zbl0847.32006MR1356150
  12. [12] Pascuas ( D.).— Zeros i interpolació en espais de funcions holomorfes del disc unitat, Tesi doctoral, Universitat Autònoma de Barcelona (1988). 
  13. [13] Rudin ( W.).— Function theory in the unit ball of ℂn, Springer Verlag, Berlin (1980). Zbl0495.32001MR601594
  14. [14] Seip ( K.).— Beurling type density theorems in the unit disk, Invent. Math.113 (1993), pp. 21-39. Zbl0789.30025MR1223222
  15. [15] Thomas ( P.).— Hardy space interpolation in the unit ball, Proc. Kon. Ned. Akad. van Wetensch. A-90 (1987), pp. 325-351. Zbl0628.32009MR914091

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.