Scattering theory with two spaces : application to transport equations with obstacles
Mustapha Mokhtar-Kharroubi; Mohamed Chabi; Plamen Stefanov
Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)
- Volume: 6, Issue: 3, page 511-523
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMokhtar-Kharroubi, Mustapha, Chabi, Mohamed, and Stefanov, Plamen. "Scattering theory with two $L^1$ spaces : application to transport equations with obstacles." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.3 (1997): 511-523. <http://eudml.org/doc/73431>.
@article{Mokhtar1997,
	author = {Mokhtar-Kharroubi, Mustapha, Chabi, Mohamed, Stefanov, Plamen},
	journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
	keywords = {wave operators; positive groups; limiting absorption principles; transport equations in exterior domains},
	language = {eng},
	number = {3},
	pages = {511-523},
	publisher = {UNIVERSITE PAUL SABATIER},
	title = {Scattering theory with two $L^1$ spaces : application to transport equations with obstacles},
	url = {http://eudml.org/doc/73431},
	volume = {6},
	year = {1997},
}
TY  - JOUR
AU  - Mokhtar-Kharroubi, Mustapha
AU  - Chabi, Mohamed
AU  - Stefanov, Plamen
TI  - Scattering theory with two $L^1$ spaces : application to transport equations with obstacles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1997
PB  - UNIVERSITE PAUL SABATIER
VL  - 6
IS  - 3
SP  - 511
EP  - 523
LA  - eng
KW  - wave operators; positive groups; limiting absorption principles; transport equations in exterior domains
UR  - http://eudml.org/doc/73431
ER  - 
References
top- [1] Stefanov ( P.) .— Spectral and scattering theory for the linear Boltzmann equation in exterior domain, Math. Nachr.137 (1988), pp. 63-77. Zbl0661.45004MR968987
- [2] Mokhtar-Kharroubi ( M.) .— Limiting Absorption Principles and Wave Operators on L1 (μ) Spaces: Applications to Transport Theory, J. Funct. Anal.115 (1993), pp. 119-145. Zbl0802.47041MR1228144
- [3] Kato ( T.) .- Scattering theory with two Hilbert spaces, J. Funct. Anal.1 (1967), pp. 342-369. Zbl0171.12303MR220097
- [4] Birman ( M.S.) .- A local criterion for the existence of wave operators, Izv. Akad. Nauk SSSR, 32 (1968), pp. 914-942. Zbl0169.16903MR248558
- [5] Birman ( M.S.) .— Scattering problems for differential operators with perturbation of the space, Izv. Akad. Nauk SSSR, 35 (1971), pp. 440-455. Zbl0236.47011MR291868
- [6] Schechter ( M.) .— A unified approach to scattering, J. Math. pures et appl.53 (1974), pp. 373-396. Zbl0304.47010MR365183
- [7] Hejtmanek ( J.) . — Scattering theory of the linear Boltzmann operator, Comm. Math. Phys.43 (1975), pp. 109-120. Zbl0309.47009MR381604
- [8] Simon ( B.) .— Existence of the scattering matrix for linearized Boltzmann equation, Comm. Math. Phys.41 (1975), pp. 99-108. MR401026
- [9] Voigt ( J.).— On the existence of the scattering operator for the linear Boltzmann equation, J. Math. Anal. Appl.58 (1977), pp. 541-558. Zbl0372.47006MR449403
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 