Scattering theory with two L 1 spaces : application to transport equations with obstacles

Mustapha Mokhtar-Kharroubi; Mohamed Chabi; Plamen Stefanov

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 3, page 511-523
  • ISSN: 0240-2963

How to cite

top

Mokhtar-Kharroubi, Mustapha, Chabi, Mohamed, and Stefanov, Plamen. "Scattering theory with two $L^1$ spaces : application to transport equations with obstacles." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.3 (1997): 511-523. <http://eudml.org/doc/73431>.

@article{Mokhtar1997,
author = {Mokhtar-Kharroubi, Mustapha, Chabi, Mohamed, Stefanov, Plamen},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {wave operators; positive groups; limiting absorption principles; transport equations in exterior domains},
language = {eng},
number = {3},
pages = {511-523},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Scattering theory with two $L^1$ spaces : application to transport equations with obstacles},
url = {http://eudml.org/doc/73431},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Mokhtar-Kharroubi, Mustapha
AU - Chabi, Mohamed
AU - Stefanov, Plamen
TI - Scattering theory with two $L^1$ spaces : application to transport equations with obstacles
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 3
SP - 511
EP - 523
LA - eng
KW - wave operators; positive groups; limiting absorption principles; transport equations in exterior domains
UR - http://eudml.org/doc/73431
ER -

References

top
  1. [1] Stefanov ( P.) .— Spectral and scattering theory for the linear Boltzmann equation in exterior domain, Math. Nachr.137 (1988), pp. 63-77. Zbl0661.45004MR968987
  2. [2] Mokhtar-Kharroubi ( M.) .— Limiting Absorption Principles and Wave Operators on L1 (μ) Spaces: Applications to Transport Theory, J. Funct. Anal.115 (1993), pp. 119-145. Zbl0802.47041MR1228144
  3. [3] Kato ( T.) .- Scattering theory with two Hilbert spaces, J. Funct. Anal.1 (1967), pp. 342-369. Zbl0171.12303MR220097
  4. [4] Birman ( M.S.) .- A local criterion for the existence of wave operators, Izv. Akad. Nauk SSSR, 32 (1968), pp. 914-942. Zbl0169.16903MR248558
  5. [5] Birman ( M.S.) .— Scattering problems for differential operators with perturbation of the space, Izv. Akad. Nauk SSSR, 35 (1971), pp. 440-455. Zbl0236.47011MR291868
  6. [6] Schechter ( M.) .— A unified approach to scattering, J. Math. pures et appl.53 (1974), pp. 373-396. Zbl0304.47010MR365183
  7. [7] Hejtmanek ( J.) . — Scattering theory of the linear Boltzmann operator, Comm. Math. Phys.43 (1975), pp. 109-120. Zbl0309.47009MR381604
  8. [8] Simon ( B.) .— Existence of the scattering matrix for linearized Boltzmann equation, Comm. Math. Phys.41 (1975), pp. 99-108. MR401026
  9. [9] Voigt ( J.).— On the existence of the scattering operator for the linear Boltzmann equation, J. Math. Anal. Appl.58 (1977), pp. 541-558. Zbl0372.47006MR449403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.