Displaying similar documents to “Scattering theory with two L 1 spaces : application to transport equations with obstacles”

Wave Operators for Defocusing Matrix Zakharov-Shabat Systems with Pnonvanishing at Infinity

Demontis, Francesco, der Mee, Cornelis van (2010)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary: 34L25; secondary: 47A40, 81Q10. In this article we prove that the wave operators describing the direct scattering of the defocusing matrix Zakharov-Shabat system with potentials having distinct nonzero values with the same modulus at ± ∞ exist, are asymptotically complete, and lead to a unitary scattering operator. We also prove that the free Hamiltonian operator is absolutely continuous.

Scattering theory for a nonlinear system of wave equations with critical growth

Changxing Miao, Youbin Zhu (2006)

Colloquium Mathematicae

Similarity:

We consider scattering properties of the critical nonlinear system of wave equations with Hamilton structure ⎧uₜₜ - Δu = -F₁(|u|²,|v|²)u, ⎨ ⎩vₜₜ - Δv = -F₂(|u|²,|v|²)v, for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). By using the energy-conservation law over the exterior of a truncated forward light cone and a dilation identity, we get a decay estimate for...

Asymptotic behaviour of the scattering phase for non-trapping obstacles

Veselin Petkov, Georgi Popov (1982)

Annales de l'institut Fourier

Similarity:

Let S ( λ ) be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle 𝒪 R n , n 3 with Dirichlet or Neumann boundary conditions on 𝒪 . The function s ( λ ) , called scattering phase, is determined from the equality e - 2 π i s ( λ ) = det S ( λ ) . We show that s ( λ ) has an asymptotic expansion s ( λ ) j = 0 c j λ n - j as λ + and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.

Scattering problems in a domain with small holes.

V. Chiadò Piat, M. Codegone (2003)

RACSAM

Similarity:

In this paper, we consider a family of scattering problems in perforated unbounded domains Ω. We assume that the perforation is contained in a bounded region and that the holes have a ?critical? size. We study the asymptotic behaviour of the outgoing solutions of the steady-state scattering problem and we prove that an extra term appears in the limit equation. Finally, we obtain convergence results for scattering frequencies and solutions.