Minimal realizations of classical simple Lie algebras through deformations
Didier Arnal; Hádi Benamor; Benjamin Cahen
Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)
- Volume: 7, Issue: 2, page 169-184
- ISSN: 0240-2963
Access Full Article
topHow to cite
topArnal, Didier, Benamor, Hádi, and Cahen, Benjamin. "Minimal realizations of classical simple Lie algebras through deformations." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.2 (1998): 169-184. <http://eudml.org/doc/73449>.
@article{Arnal1998,
author = {Arnal, Didier, Benamor, Hádi, Cahen, Benjamin},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {complex simple Lie algebra; star product; mininal realizations},
language = {eng},
number = {2},
pages = {169-184},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Minimal realizations of classical simple Lie algebras through deformations},
url = {http://eudml.org/doc/73449},
volume = {7},
year = {1998},
}
TY - JOUR
AU - Arnal, Didier
AU - Benamor, Hádi
AU - Cahen, Benjamin
TI - Minimal realizations of classical simple Lie algebras through deformations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 2
SP - 169
EP - 184
LA - eng
KW - complex simple Lie algebra; star product; mininal realizations
UR - http://eudml.org/doc/73449
ER -
References
top- [1] Arnal ( D.), Benamor ( H.) and Cahen ( B.) .— Algebraic Deformation Program on Minimal Nilpotent Orbit, Lett. Math. Phys.30 (1994), pp. 241-250. Zbl0805.17009MR1267005
- [2] Arnal ( D.) and Cortet ( J.-C.) . — Nilpotent Fourier Transform and Applications, Lett. Math. Phys.9 (1985), pp. 25-34. Zbl0616.46041MR774736
- [3] Arnal ( D.) and Cortet ( J.-C.) .- Représentations * des groupes exponentiels, J. of Funct. Anal.92 (1990), pp. 103-135. Zbl0726.22011MR1064689
- [4] Arnal ( D.), Cortet ( J.-C.) and Ludwig ( J.) .— Moyal Product and Representations of Solvable Lie Groups, J. of Funct. Anal.133 (1995), pp. 402-424. Zbl0843.22016MR1354037
- [5] Bayen ( F.), Flato ( M.), Fronsdal ( C.), Lichnerowicz ( A.) and Sternheimer ( D.) .— Deformation theory and Quantization, Ann. Phys.110 (1978), pp. 61-151. Zbl0377.53024MR496157
- [6] Conze ( N.) . — Algèbres d'opérateurs différentiels et quotient des algèbres enveloppantes, Bull. Soc. Math. France102 (1974), pp. 379-415. Zbl0298.17012MR374214
- [7] Fronsdal ( C.) .- Some ideas about Quantization, Reports on Math. Phys.15 (1978), pp. 111-145. Zbl0418.58011MR551133
- [8] Joseph ( A.) .- Minimal Realizations and Spectrum Generating Algebras, Comm. Math. Phys.36 (1974), pp. 325-338. Zbl0285.17007MR342049
- [9] Joseph ( A.) .- The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. Ecole Norm. Sup.9 (1976), pp. 1-30. Zbl0346.17008MR404366
- [10] Sternberg ( S.) and Wolf ( J.) .- Hermitian Lie algebras and metaplectic representations, Trans. Math. Soc.238 (1978), pp. 1-43. Zbl0386.22010MR486325
- [11] Wolf ( J.) . — Representations associated to minimal coadjoint orbits, in Lecture Notes in Math., Springer-Verlarg, New York676 (1978). Zbl0388.22008MR519619
- [12] Varadarajan ( V.S.) .- Lie Groups, Lie Algebras and Their Representations, Springer-Verlag, New York (1984). Zbl0955.22500MR746308
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.