Formal deformations and principal series representations of SL ( 2 , ) and SL ( 2 , )

Benjamin Cahen

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 935-951
  • ISSN: 0011-4642

Abstract

top
In this note, we study formal deformations of derived representations of the principal series representations of SL ( 2 , ) . In particular, we recover all the representations of the derived principal series by deforming one of them. Similar results are also obtained for SL ( 2 , ) .

How to cite

top

Cahen, Benjamin. "Formal deformations and principal series representations of ${\rm SL}(2,{\mathbb {R}})$ and ${\rm SL}(2,{\mathbb {C}})$." Czechoslovak Mathematical Journal 70.4 (2020): 935-951. <http://eudml.org/doc/296930>.

@article{Cahen2020,
abstract = {In this note, we study formal deformations of derived representations of the principal series representations of $\{\rm SL\}(2,\{\mathbb \{R\}\})$. In particular, we recover all the representations of the derived principal series by deforming one of them. Similar results are also obtained for $\{\rm SL\}(2,\{\mathbb \{C\}\})$.},
author = {Cahen, Benjamin},
journal = {Czechoslovak Mathematical Journal},
keywords = {deformation of representation; Lie algebra; Chevalley-Eilenberg cohomology; Moyal star product; Weyl correspondence; minimal realization},
language = {eng},
number = {4},
pages = {935-951},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Formal deformations and principal series representations of $\{\rm SL\}(2,\{\mathbb \{R\}\})$ and $\{\rm SL\}(2,\{\mathbb \{C\}\})$},
url = {http://eudml.org/doc/296930},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Formal deformations and principal series representations of ${\rm SL}(2,{\mathbb {R}})$ and ${\rm SL}(2,{\mathbb {C}})$
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 935
EP - 951
AB - In this note, we study formal deformations of derived representations of the principal series representations of ${\rm SL}(2,{\mathbb {R}})$. In particular, we recover all the representations of the derived principal series by deforming one of them. Similar results are also obtained for ${\rm SL}(2,{\mathbb {C}})$.
LA - eng
KW - deformation of representation; Lie algebra; Chevalley-Eilenberg cohomology; Moyal star product; Weyl correspondence; minimal realization
UR - http://eudml.org/doc/296930
ER -

References

top
  1. Arnal, D., Benamor, H., Cahen, B., 10.5802/afst.894, Ann. Fac. Sci. Toulouse, VI. Sér., Math. 7 (1998), 169-184. (1998) Zbl0923.17010MR1656166DOI10.5802/afst.894
  2. Cahen, B., Construction par déformation de réalisations minimales d’une algèbre de Lie simple de type G 2 , C. R. Acad. Sci., Paris, Sér. I 323 (1996), 853-857 French corrigendum ibid. 355 485 2017. (1996) Zbl0864.17010MR1414547
  3. Cahen, B., 10.1007/BF00403252, Lett. Math. Phys. 36 (1996), 65-75. (1996) Zbl0843.22020MR1371298DOI10.1007/BF00403252
  4. Cahen, B., 10.5802/ambp.133, Ann. Math. Blaise Pascal 8 (2001), 17-37 French. (2001) Zbl0987.22008MR1863645DOI10.5802/ambp.133
  5. Cahen, B., 10.1016/j.difgeo.2006.08.005, Differ. Geom. Appl. 25 (2007), 177-190. (2007) Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
  6. Cahen, B., 10.4171/RSMUP/129-16, Rend. Semin. Mat. Univ. Padova 129 (2013), 277-297. (2013) Zbl1272.22007MR3090642DOI10.4171/RSMUP/129-16
  7. Cahen, B., 10.1142/S0219498819501251, J. Algebra Appl. 18 (2019), Article ID 1950125, 15 pages. (2019) Zbl07096440MR3977786DOI10.1142/S0219498819501251
  8. Combescure, M., Robert, D., 10.1007/978-94-007-0196-0, Theoretical and Mathematical Physics. Springer, Berlin (2012). (2012) Zbl1243.81004MR2952171DOI10.1007/978-94-007-0196-0
  9. Fialowski, A., 10.1007/s10773-007-9454-7, Int. J. Theor. Phys. 47 (2008), 333-337. (2008) Zbl1140.81416MR2396768DOI10.1007/s10773-007-9454-7
  10. Fialowski, A., Montigny, M. de, 10.1088/0305-4470/38/28/006, J. Phys. A, Math. Gen. 38 (2005), 6335-6349. (2005) Zbl1073.22012MR2166626DOI10.1088/0305-4470/38/28/006
  11. Fialowski, A., Penkava, M., 10.1016/j.laa.2014.05.014, Linear Algebra Appl. 457 (2014), 408-427. (2014) Zbl1294.14008MR3230454DOI10.1016/j.laa.2014.05.014
  12. Folland, G. B., 10.1515/9781400882427, Annals of Mathematics Studies 122. Princeton University Press, Princeton (1989). (1989) Zbl0682.43001MR0983366DOI10.1515/9781400882427
  13. Gerstenhaber, M., 10.2307/1970484, Ann. Math. 79 (1964), 59-103. (1964) Zbl0123.03101MR0171807DOI10.2307/1970484
  14. Guichardet, A., Cohomologie des Groupes Topologiques et des Algèbres de Lie, Textes Mathématiques 2. Cedic, Paris (1980), French. (1980) Zbl0464.22001MR0644979
  15. Helgason, S., 10.1090/gsm/034, Graduate Studies in Mathematics 34. American Mathematical Society, Providence (2001). (2001) Zbl0993.53002MR1834454DOI10.1090/gsm/034
  16. Hermann, R., 10.1007/BF01646842, Commun. Math. Phys. 5 (1967), 131-156. (1967) Zbl0144.46105MR0231948DOI10.1007/BF01646842
  17. Hörmander, L., 10.1007/978-3-540-49938-1, Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1985). (1985) Zbl0601.35001MR0781536DOI10.1007/978-3-540-49938-1
  18. Joseph, A., 10.1007/BF01646204, Commun. Math. Phys. 36 (1974), 325-338. (1974) Zbl0285.17007MR0342049DOI10.1007/BF01646204
  19. Kirillov, A. A., 10.1090/gsm/064, Graduate Studies in Mathematics 64. American Mathematical Society, Providence (2004). (2004) Zbl1229.22003MR2069175DOI10.1090/gsm/064
  20. Knapp, A. W., 10.1515/9781400883974, Princeton Mathematical Series 36. Princeton University Press, Princeton (1986). (1986) Zbl0604.22001MR0855239DOI10.1515/9781400883974
  21. Lesimple, M., Pinczon, G., 10.1063/1.529998, J. Math. Phys. 34 (1993), 4251-4272. (1993) Zbl0798.22009MR1233270DOI10.1063/1.529998
  22. Levy-Nahas, M., 10.1063/1.1705338, J. Math. Phys. 8 (1967), 1211-1222. (1967) Zbl0175.24803MR0224747DOI10.1063/1.1705338
  23. Levy-Nahas, M., Seneor, R., 10.1007/BF01645689, Commun. Math. Phys. 9 (1968), 242-266. (1968) Zbl0161.46003MR0235804DOI10.1007/BF01645689
  24. A. Nijenhuis, R. W. Richardson, Jr., 10.1090/S0002-9904-1966-11401-5, Bull. Am. Math. Soc. 72 (1966), 1-29. (1966) Zbl0136.30502MR0195995DOI10.1090/S0002-9904-1966-11401-5
  25. A. Nijenhuis, R. W. Richardson, Jr., 10.1090/S0002-9904-1967-11703-8, Bull. Am. Math. Soc. 73 (1967), 175-179. (1967) Zbl0153.04402MR0204575DOI10.1090/S0002-9904-1967-11703-8
  26. A. Nijenhuis, R. W. Richardson, Jr., 10.1512/iumj.1968.17.17005, J. Math. Mech. 17 (1967), 89-105. (1967) Zbl0166.30202MR0214636DOI10.1512/iumj.1968.17.17005
  27. Voros, A., 10.1016/0022-1236(78)90049-6, J. Funct. Anal. 29 (1978), 104-132. (1978) Zbl0386.47031MR0496088DOI10.1016/0022-1236(78)90049-6
  28. Wallach, N. R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics 19. Marcel Dekker, New York (1973). (1973) Zbl0265.22022MR0498996

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.