Fonctions indéfiniment différentiables invariantes sur l'espace tangent d'un espace symétrique

Nouri Kamoun

Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)

  • Volume: 7, Issue: 2, page 293-311
  • ISSN: 0240-2963

How to cite

top

Kamoun, Nouri. "Fonctions indéfiniment différentiables invariantes sur l'espace tangent d'un espace symétrique." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.2 (1998): 293-311. <http://eudml.org/doc/73454>.

@article{Kamoun1998,
author = {Kamoun, Nouri},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {infinitely differentiable function; Cartan subgroup; reductive Lie group; Harish-Chandra's descent method; symmetric space},
language = {fre},
number = {2},
pages = {293-311},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Fonctions indéfiniment différentiables invariantes sur l'espace tangent d'un espace symétrique},
url = {http://eudml.org/doc/73454},
volume = {7},
year = {1998},
}

TY - JOUR
AU - Kamoun, Nouri
TI - Fonctions indéfiniment différentiables invariantes sur l'espace tangent d'un espace symétrique
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 2
SP - 293
EP - 311
LA - fre
KW - infinitely differentiable function; Cartan subgroup; reductive Lie group; Harish-Chandra's descent method; symmetric space
UR - http://eudml.org/doc/73454
ER -

References

top
  1. [B] Bouaziz ( A.) . — Fonctions indéfinement différentiables invariantes sur les algèbres de Lie réductive, C.R. Acad. Sci.Paris Série I, 314 (1992), pp. 9-12. Zbl0784.43007MR1149629
  2. [D] Dadok ( J.) .— On the C∞ Chevalley's theorem, Adv. in Math.44 (1982), pp. 121-131. Zbl0521.22009MR658537
  3. [OM] Oshima ( T.) and Matsuki ( T.), . - Orbits on affine symmetric spaces under the action of the isotropy subgroups, J. Math. Soc. Japan32 (1980) pp. 399-414. Zbl0451.53039MR567427
  4. [R] Rossman ( W.) .— The structure of semisimple symmetric spaces, Canadian J. Math.XXXI, n° 1 (1979), pp. 157-180. Zbl0357.53033MR518716
  5. [S] Schlichtkrull ( H.) . — Hyperfunctions and harmonic analysis on symmetric spaces, Birkhaüser, Boston1984. Zbl0555.43002MR757178
  6. [Sc] Schwartz ( L.) .— Théorie des distributions, Hermann, Paris1978. Zbl0399.46028MR209834
  7. [Se] Sekiguchi ( J.) .— Invariant spherical hyperfunctions on the tangent space of a symmetric space, in Advanced Studies in Pure Mathematics, Kinokuniya, Tokyo, 6 (1985), pp. 83-126. Zbl0578.22011MR803331
  8. [T] Trèves ( F.) . - Topological vector spaces, distributions and kernels, Academic press, New-York, London1967. Zbl0171.10402MR225131
  9. [V1] Varadarajan ( V.S.) .— Harmonic analysis on real reductive groups, Lectures Notes in Mathematics, Springer-Verlag, Berlin - New-York576 (1977). Zbl0354.43001MR473111
  10. [V2] Varadarajan ( V.S.) .- Lie Groups, Lie algebras, and their representations, Prentice-Hall, Englewood Cliffs, New-Jersey, 1974. Zbl0371.22001MR376938
  11. [VD] Van Dijk ( G.) . — Invariant eigendistributions on the tangent space of a rank one symmetric space, Math. Ann.268 (1984), pp. 405-416. Zbl0527.43005MR751738

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.