The classification of curvilinear angles in the complex plane and the groups of ± holomorphic diffeomorphisms

Isao Nakai

Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)

  • Volume: 7, Issue: 2, page 313-334
  • ISSN: 0240-2963

How to cite

top

Nakai, Isao. "The classification of curvilinear angles in the complex plane and the groups of $\pm $ holomorphic diffeomorphisms." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.2 (1998): 313-334. <http://eudml.org/doc/73455>.

@article{Nakai1998,
author = {Nakai, Isao},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {anti-holomorphic involution; classification of curvilinear angles; groups of holomorphic diffeomorphisms; Ecalle-Voronin cylinder},
language = {eng},
number = {2},
pages = {313-334},
publisher = {UNIVERSITE PAUL SABATIER},
title = {The classification of curvilinear angles in the complex plane and the groups of $\pm $ holomorphic diffeomorphisms},
url = {http://eudml.org/doc/73455},
volume = {7},
year = {1998},
}

TY - JOUR
AU - Nakai, Isao
TI - The classification of curvilinear angles in the complex plane and the groups of $\pm $ holomorphic diffeomorphisms
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 2
SP - 313
EP - 334
LA - eng
KW - anti-holomorphic involution; classification of curvilinear angles; groups of holomorphic diffeomorphisms; Ecalle-Voronin cylinder
UR - http://eudml.org/doc/73455
ER -

References

top
  1. [1] Beardon ( A.F.) .— Iteration of Rational Functions, Graduate Texts in Math., Springer-Verlag132 (1991). Zbl0742.30002MR1128089
  2. [2] Cerveau ( D.) and Moussu ( R.) .- Groupes d'automorphismes de C, 0 et équations différentielles ydy + ... = 0, Bull. Soc. Math. France116 (1988). Zbl0696.58011MR1005391
  3. [3] Ecalle ( J.) .— Les fonctions résurgentes I-III, preprint in Université de Paris, Orsay (1985). MR852210
  4. [4] IL'YASHENKO ( Yu S.) . - Non linear Stokes Phenomena, Advances in Soviet Math., A.M.S.14 (1993). Zbl0804.32011
  5. [5] Kasner ( E.) .— Conformal geometry, Proc. Fifth Int. Cong. Math. Cambridge2 (1912), p. 81 JFM44.0634.01
  6. [6] Kasner ( E.) .— Conformal classification of analytic arcs or elements: Poincaré's local problem of conformal geometry, Trans. Amer. Math. Soc.16 (1915), pp. 333-349. Zbl45.0663.02MR1501016JFM45.0663.02
  7. [7] Malgrange ( B.) .— Travaux d'Ecalle et de Martinet-Ramis sur les systèmes dynamiques, Astérisque92-93 (1982), pp. 59-73. Zbl0526.58009MR689526
  8. [8] Nakai ( I.) .- Separatrices for non solvable dynamics on C, 0, Ann. Inst. Fourier, Grenoble, 44, n° 2 (1994), pp. 569-599 . Zbl0804.57022MR1296744
  9. [9] Pérez Marco ( R.) .- Non linearizable holomorphic dynamics having an uncountable number of symmetries, preprint. 
  10. [10] Pfeiffer ( G.A.) . - On the conformal geometry of analytic arcs, Amer. J. Math.37 (1915), pp. 395-430. Zbl45.0663.01JFM45.0663.01
  11. [11] Poincaré ( H.) . - Les fonctions analytiques de deux variables et la représentation conforme, Rendiconti del circolo matematico di Palermo23 (1907), pp. 185-220. Zbl38.0459.02JFM38.0459.02
  12. [12] Voronin ( S.M.) . — Analytic classification of germs of maps (C, 0) → (C, 0) with identical linear part, Funct. Anal.15, n° 1 (1981), pp. 1-17. Zbl0463.30010MR609790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.