Separatrices for non solvable dynamics on , 0

Isao Nakai

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 2, page 569-599
  • ISSN: 0373-0956

Abstract

top
We define the separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane and prove their existence for non solvable pseudogroups (Theorem 1). This extends a result by Shcherbakov (in [21]) accurately. Our method also applies to prove the topological rigidity theorem for generic pseudogroups attributed to Shcherbakov (dans [20]).

How to cite

top

Nakai, Isao. "Separatrices for non solvable dynamics on ${\mathbb {C}},0$." Annales de l'institut Fourier 44.2 (1994): 569-599. <http://eudml.org/doc/75074>.

@article{Nakai1994,
abstract = {We define the separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane $\{\Bbb C\}$ and prove their existence for non solvable pseudogroups (Theorem 1). This extends a result by Shcherbakov (in [21]) accurately. Our method also applies to prove the topological rigidity theorem for generic pseudogroups attributed to Shcherbakov (dans [20]).},
author = {Nakai, Isao},
journal = {Annales de l'institut Fourier},
keywords = {separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane; non solvable pseudogroups; topological rigidity theorem for generic pseudogroups},
language = {eng},
number = {2},
pages = {569-599},
publisher = {Association des Annales de l'Institut Fourier},
title = {Separatrices for non solvable dynamics on $\{\mathbb \{C\}\},0$},
url = {http://eudml.org/doc/75074},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Nakai, Isao
TI - Separatrices for non solvable dynamics on ${\mathbb {C}},0$
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 2
SP - 569
EP - 599
AB - We define the separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane ${\Bbb C}$ and prove their existence for non solvable pseudogroups (Theorem 1). This extends a result by Shcherbakov (in [21]) accurately. Our method also applies to prove the topological rigidity theorem for generic pseudogroups attributed to Shcherbakov (dans [20]).
LA - eng
KW - separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane; non solvable pseudogroups; topological rigidity theorem for generic pseudogroups
UR - http://eudml.org/doc/75074
ER -

References

top
  1. [1]I.N. BAKER, Fractional iteration near a fixpoint of multiplier 1, J. Australian Math. Soc., 4 (1964), 143-148. Zbl0134.05402MR29 #2369
  2. [2]A.F. BEARDON, Iteration of Rational Functions, Graduate Texts in Math. 132, Springer-Verlag, 1991. Zbl0742.30002MR92j:30026
  3. [3]A.D. BRJUNO, Analytic form of differential equations, Transaction Moscow Math. Soc., 25 (1971), 131-288. Zbl0272.34018MR51 #13365
  4. [4]C. CAMACHO, On the local structure of conformal mappings and holomorphic vector fields, Astérisque, 59-60 (1978), 83-84. Zbl0415.30015MR81d:58016
  5. [5]D. CERVEAU, R. MOUSSU, Groupes d'automorphismes de ℂ,0 et équations différentielles y dy +...= 0, Bull. Soc. Math. France, 116 (1988). Zbl0696.58011MR90m:58192
  6. [6]D. CERVEAU, P. SAD, Problèmes de modules pour les formes différentielles singulières dans le plan complexe, Comment. Math. Helvetici, 61 (1986), 222-253. Zbl0604.58004MR88f:58124
  7. [7]J. ÉCALLE, Les fonctions Résurgentes I-III, preprints in Université de Paris, Orsay, 1985. 
  8. [8]P. FATOU, Sur les équations fonctionnelles, Bull. S.M.F., (1919), 161-271 48 (1920), 33-94, 208-304. Zbl47.0921.02JFM47.0921.02
  9. [9]Xavier GOMEZ-MONT, The transverse dynamics of a holomorphic flow, Ann. Math., (1988), 49-92, 127. Zbl0639.32013MR89d:32049
  10. [10]Yu. S. IL'YASHENKO, The topology of phase portraits of analytic differential equations in the complex projective plane, Trudy Sem Petrovsky, 4 (1978), 83-136. Zbl0418.34007
  11. [11]Yu.S. IL'YASHENKO, The finiteness problem for limit cycles of polynomial vector fields on the plane, germs of saddle resonant vector fields and non-Hausdorff Riemann surfaces, Lecture Notes in Math. No 1060, 290-305. Zbl0588.34024
  12. [12]Yu.S. IL'YASHENKO, Finiteness Theorems for Limit Cycles, Translations of Mathematical Monographs, AMS, 94, 1991. Zbl0743.34036MR92k:58221
  13. [13]T. KIMURA, On the iteration of analytic functions, Funk. Equacioj, 14-3 (1971), 197-238. Zbl0237.30008MR46 #2019
  14. [14]V.P. KOSTOV, Versal deformation of differential forms of degree α on a line, Funct. Anal. App., 18 (4) (1985), 335-337. Zbl0573.58002MR86g:32039
  15. [15]J.F. MATTEI, R. MOUSSU, Holonomie et intégrales première, Ann. Sc. Ec. Norm. Sup., 13 (1980), 469-523. Zbl0458.32005MR83b:58005
  16. [16]J. MARTINET, Remarques sur la bifurcation Noeud-col dans le domaine complexe, Asterisque, 150-151 (1987), 131-149. Zbl0655.58025MR89d:58101
  17. [17]I. NAKAI, On toplogical types of polynomial mappings, Topology, 23, No. 1 (1984), 45-66. Zbl0531.58004MR85g:58076
  18. [18]I. NAKAI, Topology of complex webs of codimension one and geometry of projective space curves, Topology, 26 (4) (1987), 475-504. Zbl0647.57018MR89b:14010
  19. [19]A. LINS NETO, Construction of singular holomorphic vector fields and foliations in dimension two, J. Differential Geometry, 26 (1987), 1-31. Zbl0625.57012MR88f:32047
  20. [20]A.A SCHERBAKOV, Topological and analytic conjugation of non commutative groups of conformal mappings, Trudy Sem. Petrovsk, 10 (1984), 170-192, 238-239. Zbl0568.30010
  21. [21]A.A. SCHERBAKOV, On the density of an orbit of a pseudogroup of conformal mappings and a generalization of the Hudai-Verenov theorem, Vestnik Movskovskogo Universiteta. Mathematika, 31, No.4 (1982), 10-15. Zbl0517.30009
  22. [22]S.M. VORONIN, Analytic classification of germs of maps (ℂ,0) →(ℂ,0) with identical linear part, Funct. Anal., 15, No.1 (1981), 1-17. Zbl0463.30010MR82h:58008
  23. [23]S.M. VORONIN, Analytic classification of pairs of involutions and its applications, Funct. Anal., 16, No.2 (1982), 94-100. Zbl0521.30010MR83j:58013
  24. [24]M.O. HUDAI-VERENOV, A property of the solution of a differential equation, Mat. Sb., 56(98) : 3 (1962), 301-308. 

Citations in EuDML Documents

top
  1. Michel Belliart, Sur certains pseudogroupes de biholomorphismes locaux de ( n , 0 )
  2. Isao Nakai, The classification of curvilinear angles in the complex plane and the groups of ± holomorphic diffeomorphisms
  3. Julio C. Rebelo, Ergodicity and rigidity for certain subgroups of Diff ω ( S 1 )
  4. Yoshifumi Matsuda, Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function
  5. A. Lins Neto, P. Sad, B. Scárdua, On topological rigidity of projective foliations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.