Separatrices for non solvable dynamics on
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 2, page 569-599
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNakai, Isao. "Separatrices for non solvable dynamics on ${\mathbb {C}},0$." Annales de l'institut Fourier 44.2 (1994): 569-599. <http://eudml.org/doc/75074>.
@article{Nakai1994,
abstract = {We define the separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane $\{\Bbb C\}$ and prove their existence for non solvable pseudogroups (Theorem 1). This extends a result by Shcherbakov (in [21]) accurately. Our method also applies to prove the topological rigidity theorem for generic pseudogroups attributed to Shcherbakov (dans [20]).},
author = {Nakai, Isao},
journal = {Annales de l'institut Fourier},
keywords = {separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane; non solvable pseudogroups; topological rigidity theorem for generic pseudogroups},
language = {eng},
number = {2},
pages = {569-599},
publisher = {Association des Annales de l'Institut Fourier},
title = {Separatrices for non solvable dynamics on $\{\mathbb \{C\}\},0$},
url = {http://eudml.org/doc/75074},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Nakai, Isao
TI - Separatrices for non solvable dynamics on ${\mathbb {C}},0$
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 2
SP - 569
EP - 599
AB - We define the separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane ${\Bbb C}$ and prove their existence for non solvable pseudogroups (Theorem 1). This extends a result by Shcherbakov (in [21]) accurately. Our method also applies to prove the topological rigidity theorem for generic pseudogroups attributed to Shcherbakov (dans [20]).
LA - eng
KW - separatrices for pseudogroups of diffeomorphisms of open neighbourhoods of the origin in the complex plane; non solvable pseudogroups; topological rigidity theorem for generic pseudogroups
UR - http://eudml.org/doc/75074
ER -
References
top- [1]I.N. BAKER, Fractional iteration near a fixpoint of multiplier 1, J. Australian Math. Soc., 4 (1964), 143-148. Zbl0134.05402MR29 #2369
- [2]A.F. BEARDON, Iteration of Rational Functions, Graduate Texts in Math. 132, Springer-Verlag, 1991. Zbl0742.30002MR92j:30026
- [3]A.D. BRJUNO, Analytic form of differential equations, Transaction Moscow Math. Soc., 25 (1971), 131-288. Zbl0272.34018MR51 #13365
- [4]C. CAMACHO, On the local structure of conformal mappings and holomorphic vector fields, Astérisque, 59-60 (1978), 83-84. Zbl0415.30015MR81d:58016
- [5]D. CERVEAU, R. MOUSSU, Groupes d'automorphismes de ℂ,0 et équations différentielles y dy +...= 0, Bull. Soc. Math. France, 116 (1988). Zbl0696.58011MR90m:58192
- [6]D. CERVEAU, P. SAD, Problèmes de modules pour les formes différentielles singulières dans le plan complexe, Comment. Math. Helvetici, 61 (1986), 222-253. Zbl0604.58004MR88f:58124
- [7]J. ÉCALLE, Les fonctions Résurgentes I-III, preprints in Université de Paris, Orsay, 1985.
- [8]P. FATOU, Sur les équations fonctionnelles, Bull. S.M.F., (1919), 161-271 48 (1920), 33-94, 208-304. Zbl47.0921.02JFM47.0921.02
- [9]Xavier GOMEZ-MONT, The transverse dynamics of a holomorphic flow, Ann. Math., (1988), 49-92, 127. Zbl0639.32013MR89d:32049
- [10]Yu. S. IL'YASHENKO, The topology of phase portraits of analytic differential equations in the complex projective plane, Trudy Sem Petrovsky, 4 (1978), 83-136. Zbl0418.34007
- [11]Yu.S. IL'YASHENKO, The finiteness problem for limit cycles of polynomial vector fields on the plane, germs of saddle resonant vector fields and non-Hausdorff Riemann surfaces, Lecture Notes in Math. No 1060, 290-305. Zbl0588.34024
- [12]Yu.S. IL'YASHENKO, Finiteness Theorems for Limit Cycles, Translations of Mathematical Monographs, AMS, 94, 1991. Zbl0743.34036MR92k:58221
- [13]T. KIMURA, On the iteration of analytic functions, Funk. Equacioj, 14-3 (1971), 197-238. Zbl0237.30008MR46 #2019
- [14]V.P. KOSTOV, Versal deformation of differential forms of degree α on a line, Funct. Anal. App., 18 (4) (1985), 335-337. Zbl0573.58002MR86g:32039
- [15]J.F. MATTEI, R. MOUSSU, Holonomie et intégrales première, Ann. Sc. Ec. Norm. Sup., 13 (1980), 469-523. Zbl0458.32005MR83b:58005
- [16]J. MARTINET, Remarques sur la bifurcation Noeud-col dans le domaine complexe, Asterisque, 150-151 (1987), 131-149. Zbl0655.58025MR89d:58101
- [17]I. NAKAI, On toplogical types of polynomial mappings, Topology, 23, No. 1 (1984), 45-66. Zbl0531.58004MR85g:58076
- [18]I. NAKAI, Topology of complex webs of codimension one and geometry of projective space curves, Topology, 26 (4) (1987), 475-504. Zbl0647.57018MR89b:14010
- [19]A. LINS NETO, Construction of singular holomorphic vector fields and foliations in dimension two, J. Differential Geometry, 26 (1987), 1-31. Zbl0625.57012MR88f:32047
- [20]A.A SCHERBAKOV, Topological and analytic conjugation of non commutative groups of conformal mappings, Trudy Sem. Petrovsk, 10 (1984), 170-192, 238-239. Zbl0568.30010
- [21]A.A. SCHERBAKOV, On the density of an orbit of a pseudogroup of conformal mappings and a generalization of the Hudai-Verenov theorem, Vestnik Movskovskogo Universiteta. Mathematika, 31, No.4 (1982), 10-15. Zbl0517.30009
- [22]S.M. VORONIN, Analytic classification of germs of maps (ℂ,0) →(ℂ,0) with identical linear part, Funct. Anal., 15, No.1 (1981), 1-17. Zbl0463.30010MR82h:58008
- [23]S.M. VORONIN, Analytic classification of pairs of involutions and its applications, Funct. Anal., 16, No.2 (1982), 94-100. Zbl0521.30010MR83j:58013
- [24]M.O. HUDAI-VERENOV, A property of the solution of a differential equation, Mat. Sb., 56(98) : 3 (1962), 301-308.
Citations in EuDML Documents
top- Michel Belliart, Sur certains pseudogroupes de biholomorphismes locaux de
- Isao Nakai, The classification of curvilinear angles in the complex plane and the groups of holomorphic diffeomorphisms
- Julio C. Rebelo, Ergodicity and rigidity for certain subgroups of
- Yoshifumi Matsuda, Groups of real analytic diffeomorphisms of the circle with a finite image under the rotation number function
- A. Lins Neto, P. Sad, B. Scárdua, On topological rigidity of projective foliations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.