Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique

Philippe Castillon

Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)

  • Volume: 7, Issue: 3, page 379-400
  • ISSN: 0240-2963

How to cite

top

Castillon, Philippe. "Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.3 (1998): 379-400. <http://eudml.org/doc/73458>.

@article{Castillon1998,
author = {Castillon, Philippe},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {surfaces in hyperbolic 3-space; constant mean curvature surfaces; hyperbolic rotational surfaces},
language = {fre},
number = {3},
pages = {379-400},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique},
url = {http://eudml.org/doc/73458},
volume = {7},
year = {1998},
}

TY - JOUR
AU - Castillon, Philippe
TI - Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 3
SP - 379
EP - 400
LA - fre
KW - surfaces in hyperbolic 3-space; constant mean curvature surfaces; hyperbolic rotational surfaces
UR - http://eudml.org/doc/73458
ER -

References

top
  1. [Ba] Ballmann ( W.) .— On spaces of nonpositive curvature, Birkhäuser, 1995. MR1377265
  2. [Bu] Buser ( P.) . — Geometry and spectra of compact Riemann surfaces, Birkhäuser, Boston, 1992. Zbl0770.53001MR1183224
  3. [De] Delaunay ( C.) .- Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pure et Appl.16 (1841), pp. 309-320. 
  4. [Go] Gomes ( J.M.) . - Spherical surfaces with constant mean curvature in hyperbolic space, Bol. Soc. Bras. Mat.18, n° 2 (1987), pp. 49-73. Zbl0752.53034MR1018445
  5. [Hs] Hsiang ( W.Y.) .— On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature, Duke Math. J.49, n° 3 (1982), pp. 485-496. Zbl0496.53006MR672494
  6. [HW] Hsiang ( W.) and Yu ( W.C.) .— A generalization of a theorem of Delaunay, J. Diff. Geom.16 (1981), pp. 161-177. Zbl0504.53044MR638783
  7. [KN] Kobayashi ( S.) et Nomizu ( K.) .— Foundations of differential geometry I, Interscience, New-York, 1963. Zbl0119.37502MR152974
  8. [RE] Rosenberg ( H.) et Sá Earp ( R.) .— The geometry of properly embedded special surfaces in R3; e.g. surfaces satisfying aH + bK = 1, where a and b are positive, Duke Math. J.73, n° 2 (1994), pp. 291-306. Zbl0802.53002MR1262209
  9. [St] Sterling ( I.) .- A Generalization of a theorem of Delaunay to rotational W-hypersurfaces of σl-type in Hn+1 and Sn+1, Pacific J. Math.127, n° 1 (1987), pp. 187-197. Zbl0579.53041MR876025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.