Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique
Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)
- Volume: 7, Issue: 3, page 379-400
- ISSN: 0240-2963
Access Full Article
topHow to cite
topCastillon, Philippe. "Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.3 (1998): 379-400. <http://eudml.org/doc/73458>.
@article{Castillon1998,
author = {Castillon, Philippe},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {surfaces in hyperbolic 3-space; constant mean curvature surfaces; hyperbolic rotational surfaces},
language = {fre},
number = {3},
pages = {379-400},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique},
url = {http://eudml.org/doc/73458},
volume = {7},
year = {1998},
}
TY - JOUR
AU - Castillon, Philippe
TI - Sur les surfaces de révolution à courbure moyenne constante dans l'espace hyperbolique
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 3
SP - 379
EP - 400
LA - fre
KW - surfaces in hyperbolic 3-space; constant mean curvature surfaces; hyperbolic rotational surfaces
UR - http://eudml.org/doc/73458
ER -
References
top- [Ba] Ballmann ( W.) .— On spaces of nonpositive curvature, Birkhäuser, 1995. MR1377265
- [Bu] Buser ( P.) . — Geometry and spectra of compact Riemann surfaces, Birkhäuser, Boston, 1992. Zbl0770.53001MR1183224
- [De] Delaunay ( C.) .- Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pure et Appl.16 (1841), pp. 309-320.
- [Go] Gomes ( J.M.) . - Spherical surfaces with constant mean curvature in hyperbolic space, Bol. Soc. Bras. Mat.18, n° 2 (1987), pp. 49-73. Zbl0752.53034MR1018445
- [Hs] Hsiang ( W.Y.) .— On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature, Duke Math. J.49, n° 3 (1982), pp. 485-496. Zbl0496.53006MR672494
- [HW] Hsiang ( W.) and Yu ( W.C.) .— A generalization of a theorem of Delaunay, J. Diff. Geom.16 (1981), pp. 161-177. Zbl0504.53044MR638783
- [KN] Kobayashi ( S.) et Nomizu ( K.) .— Foundations of differential geometry I, Interscience, New-York, 1963. Zbl0119.37502MR152974
- [RE] Rosenberg ( H.) et Sá Earp ( R.) .— The geometry of properly embedded special surfaces in R3; e.g. surfaces satisfying aH + bK = 1, where a and b are positive, Duke Math. J.73, n° 2 (1994), pp. 291-306. Zbl0802.53002MR1262209
- [St] Sterling ( I.) .- A Generalization of a theorem of Delaunay to rotational W-hypersurfaces of σl-type in Hn+1 and Sn+1, Pacific J. Math.127, n° 1 (1987), pp. 187-197. Zbl0579.53041MR876025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.