Embedded resolution of singularities in rigid analytic geometry

Hans Schoutens

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 2, page 297-330
  • ISSN: 0240-2963

How to cite

top

Schoutens, Hans. "Embedded resolution of singularities in rigid analytic geometry." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1999): 297-330. <http://eudml.org/doc/73489>.

@article{Schoutens1999,
author = {Schoutens, Hans},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {rigid analytic spaces; resolution of singularities},
language = {eng},
number = {2},
pages = {297-330},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Embedded resolution of singularities in rigid analytic geometry},
url = {http://eudml.org/doc/73489},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Schoutens, Hans
TI - Embedded resolution of singularities in rigid analytic geometry
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 297
EP - 330
LA - eng
KW - rigid analytic spaces; resolution of singularities
UR - http://eudml.org/doc/73489
ER -

References

top
  1. [BM] Bierstone ( E.) and Milman ( P.D.). - Semianalytic and subanalytic sets, Publ. Math. I.H.E.S., 67 (1988), pp. 5-42. Zbl0674.32002MR972342
  2. [BM2] Bierstone ( E.) and Milman ( P.D.). — Canonical desingularization in characteristic zero by blowing up the maximal strata of a local invariant, Invent. Math., 128 (1997), pp. 207-302. Zbl0896.14006MR1440306
  3. [BGR] Bosch ( S.), Güntzer ( U.) and Remmert ( R.). — Non-archimedean analysis, Springer-Verlag, Berlin, 1984. Zbl0539.14017MR746961
  4. [FvdP] Fresnel ( J.) and van der Put ( M.). — Géométrie analytique rigide et applications, Birkhäuser, Boston, 1981. Zbl0479.14015MR644799
  5. [GS] Gardener ( T.) and Schoutens ( H.). — Rigid Subanalytic Sets, (preprint). Zbl0792.14010
  6. [Hart] Hartshorne ( R.). — Algebraic geometry, Springer-Verlag, New York, 1997. Zbl0367.14001MR463157
  7. [Hi] Hironaka ( H.). — Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math., 79 (1964), pp. 109-326. Zbl0122.38603MR199184
  8. [Kap] I. KAPLANSKY ( I.). — Commutative Rings, Allyn and Bacon, Boston, 1969. Zbl0203.34601MR254021
  9. [Köp] Köpf ( U.). - Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, 2 Serie, vol. Heft 7, Schriftenreihe Math. Inst. Univ. Münster, 1974 Zbl0275.14006MR422671
  10. [Mats] Matsumura ( H.). — Commutative ring theory, Cambridge University Press, Cambridge, 1986. Zbl0603.13001MR879273
  11. [Mats 2] Matsumura ( H.). — Commutative algebra, W.A. Benjamin, 1970. Zbl0211.06501MR266911
  12. [Sch 0] Schoutens ( H.). - Approximation and Subanalytic Sets over a Complete Valuation Ring, Ph.D. Thesis, Leuven, 1991. 
  13. [Sch 1] Schoutens ( H.). - Rigid Subanalytic Sets, Compositio Math., 94 (1994), pp. 269-295. Zbl0867.32012MR1310860
  14. [Sch 2] Schoutens ( H.). — Uniformization of Rigid Subanalytic Sets, Compositio Math., 94 (1994), pp. 227-245. Zbl0867.32011MR1310858
  15. [Sch 3] Schoutens ( H.). - Rigid Subanalytic Sets in the Plane, J. Algebra, 170, No. 1 (1994), pp. 266-276. Zbl0826.14014MR1302840
  16. [Sch 4] Schoutens ( H.). - Blowing Up in Rigid Analytic Geometry, Bull. of Belg. Math. Soc., 2 (1994), pp. 401-419. Zbl0854.32020MR1355829
  17. [Sch 5] Schoutens ( H.). — The closure of rigid semianalytic sets, Am. J. Math., 198 (1997), pp. 120-134. Zbl0949.14034MR1482978

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.