Rigid subanalytic sets

Hans Schoutens

Compositio Mathematica (1994)

  • Volume: 94, Issue: 3, page 269-295
  • ISSN: 0010-437X

How to cite

top

Schoutens, Hans. "Rigid subanalytic sets." Compositio Mathematica 94.3 (1994): 269-295. <http://eudml.org/doc/90337>.

@article{Schoutens1994,
author = {Schoutens, Hans},
journal = {Compositio Mathematica},
keywords = {rigid subanalytic sets; analytic elimination theory; Weierstrass preparation},
language = {eng},
number = {3},
pages = {269-295},
publisher = {Kluwer Academic Publishers},
title = {Rigid subanalytic sets},
url = {http://eudml.org/doc/90337},
volume = {94},
year = {1994},
}

TY - JOUR
AU - Schoutens, Hans
TI - Rigid subanalytic sets
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 94
IS - 3
SP - 269
EP - 295
LA - eng
KW - rigid subanalytic sets; analytic elimination theory; Weierstrass preparation
UR - http://eudml.org/doc/90337
ER -

References

top
  1. [Ba] G. Bachman, Introduction to p-adic numbers and valuation theory, New York, 1964. Zbl0192.40103MR169847
  2. [BGR] S. Bosch, U. Güntzer and R. Remmert, Non-archimedean Analysis, Springer-Verlag, Berlin, 1984. Zbl0539.14017MR746961
  3. [BM] E. Bierstone and P.D. Milman, Semianalytic and subanalytic sets, Publ. Math. I.H.E.S. 67 (1988), 5-42. Zbl0674.32002MR972342
  4. [Bo] S. Bosch, A rigid analytic version of M. Artin's theorem on analytic equations, Math. Ann.255 (1981), 395-404. Zbl0462.14002MR615859
  5. [DvdD] J. Denef and L. van den Dries, p-adic and real subanalytic sets, Ann. Math.128 (1988), 79-138. Zbl0693.14012MR951508
  6. [FvdP] J. Fresnel and M. van der Put, Géométrie Analytique Rigide et Applications, Birkhäuser, Boston, 1981. Zbl0479.14015MR644799
  7. [Ga1] A.M. Gabrielov, Projections of semianalytic sets, Functional Anal. Appl.2 (1968), 282-291. Zbl0179.08503MR245831
  8. [Ga2] A.M. Gabrielov, Formal relations between analytic functions, Math. USSR Izvestija7 (1973), 1056-1088. Zbl0297.32007MR346184
  9. [Hi1] H. Hironaka, Introduction to Real-analytic Sets and Real-analytic Maps, Instituto Mathematico L. Tonelli, Pisa, 1973. MR477121
  10. [Hi2] H. Hironaka, Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, pp. 453-493. Zbl0297.32008MR377101
  11. [Ko] N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta-functions, Springer-Verlag, New York, 1977. Zbl0364.12015MR466081
  12. [Lip] L. Lipshitz, Rigid subanalytic sets, Amer. J. Math.115 (1993), 77-108. Zbl0792.14010MR1209235
  13. [LR] L. Lipshitz and Z. Robinson, Rigid subanalytic subsets of the line and the plane (1992), 208-220 (to appear). Zbl0935.14035MR1393258
  14. [Łoj1] S. Lojasiewicz, Sur la sémi analycité des images inverses par l'application tangente, Bull. Ac. Polon. Sci.27 (1979), 525-527. Zbl0452.32005
  15. [Łoj2] S. Lojasiewicz, Ensembles sémi-analytiques, IHES, Bures-sur-Yvette, 1965. 
  16. [Rob] A. Robinson, Complete Theories, North Holland, Amsterdam, 1966. Zbl0070.02701MR472504
  17. [Sch1] H. Schoutens, Approximation and Subanalytic Sets over a Complete Valuation Ring, Ph.D. Thesis, Leuven, 1991. 
  18. [Sch2] H. Schoutens, Uniformization of rigid subanalytic sets, Comp. Math. (1994) (to appear). Zbl0867.32011MR1310858
  19. [Sch3] H. Schoutens, Rigid subanalytic sets in the plane, J. Algebra (1993) (to appear). Zbl0826.14014MR1302840
  20. [vdD] L. van den Dries, A specialization theorem for p-adic power series converging on the closed unit disc, J. Algebra73(2) (1981), 613-623. Zbl0511.12018MR640053
  21. [Wei] W. Weispfenning, Quantifier elimination and decision procedures for valued fields, Models and Sets, Lect. Notes in Math., vol. 1103, Springer-Verlag, 1984, pp. 419-472. Zbl0584.03022MR775704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.