Construction de flots de Smale en dimension 3

F. Béguin; C. Bonatti; J. L. Vieitez

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 3, page 369-410
  • ISSN: 0240-2963

How to cite

top

Béguin, F., Bonatti, C., and Vieitez, J. L.. "Construction de flots de Smale en dimension 3." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.3 (1999): 369-410. <http://eudml.org/doc/73493>.

@article{Béguin1999,
author = {Béguin, F., Bonatti, C., Vieitez, J. L.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {flows; hyperbolic sets; Smale flow},
language = {fre},
number = {3},
pages = {369-410},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Construction de flots de Smale en dimension 3},
url = {http://eudml.org/doc/73493},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Béguin, F.
AU - Bonatti, C.
AU - Vieitez, J. L.
TI - Construction de flots de Smale en dimension 3
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 3
SP - 369
EP - 410
LA - fre
KW - flows; hyperbolic sets; Smale flow
UR - http://eudml.org/doc/73493
ER -

References

top
  1. [1] Beguin ( F.) et Bonatti ( C.). — Flots de Smale en dimension 3 : présentation finie de voisinages invariants d'ensembles selles, à paraître à Topology. Zbl1102.37307MR1871244
  2. [2] Birman ( J.S.) et Williams ( R.F.). — Knotted periodic orbits in dynamical systems II : knots holders for fibered knots. Contemporary mathematics, Volume 20, 1983. Zbl0526.58043MR718132
  3. [3] Blanchard ( P.) et Franks ( J.). — An obstruction to the existence of certain dynamics on surfaces. Ergodic theory and Dynamical systems1, pages 255-260, 1981. Zbl0502.58030MR662468
  4. [4] Bonatti ( C.) et Langevin ( R.) avec la collaboration de E. Jeandenans. Difféomorphismes de Smale des surfaces. Astérisque, vol. 250, 1998. Zbl0922.58058MR1650926
  5. [5] Bowen ( R.). - One dimensional hyperbolic sets for flows. Journal of Differential Equations12, pages 173-179, 1972. Zbl0242.58005MR336762
  6. [6] Franks ( J.). — Symbolic dynamics in flows on three manifolds. Transactions of the American Mathematical Society 279, volume 1, pages 231-236, 1983. Zbl0534.58032MR704612
  7. [7] Ghrist ( R.W.), Holmes ( P.J.) et Sullivan ( M.C.). — Knots and Links in Three-Dimesnional Flows. Lect. Note in Math., vol. 1654, Springer-Verlag, 1997. Zbl0869.58044MR1480169
  8. [8] Hayashi ( S.). — Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows. Annals of mathematics145, pages 81-137, 1997. Zbl0871.58067MR1432037
  9. [9] Hirsch ( M.), Pugh ( C.) et Shub ( M.). - Invariant manifolds. Lectures Notes in Mathematics583, Springer-Verlag, 1977. Zbl0355.58009MR501173
  10. [10] Jeandenans ( E.). — Difféomorphismes hyperboliques des surfaces et combinatoire des partitions de Markov. Thèse de doctorat de l'Université de Bourgogne, 1996. 
  11. [11] Parry ( W.) and Sullivan ( D.). — A topological invariant for flows on one-dimensional spaces. Topology14, pages 297-299, 1975. Zbl0314.54045MR405385
  12. [12] Pugh ( C.) et Shub ( M.). - Suspending subshifts. In Contributions to geometry and Analysis, C. Percelli and R. Sackester editors, John Hopkins University Press, 1981. Zbl0585.58034MR648471
  13. [13] Robinson ( C.). - Structural stability of C1 flows. Dynamical systems (Warwick, 1974), Lecture Notes in Mathematics468, pages 262-277, Springer Verlag, 1975. Zbl0307.58012MR650640

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.