On singular perturbations for quasilinear IBV problems

Albert Milani

Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)

  • Volume: 9, Issue: 3, page 467-486
  • ISSN: 0240-2963

How to cite

top

Milani, Albert. "On singular perturbations for quasilinear IBV problems." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.3 (2000): 467-486. <http://eudml.org/doc/73522>.

@article{Milani2000,
author = {Milani, Albert},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {local Kato-Sobolev solutions; singular convergence; life span},
language = {eng},
number = {3},
pages = {467-486},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On singular perturbations for quasilinear IBV problems},
url = {http://eudml.org/doc/73522},
volume = {9},
year = {2000},
}

TY - JOUR
AU - Milani, Albert
TI - On singular perturbations for quasilinear IBV problems
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 3
SP - 467
EP - 486
LA - eng
KW - local Kato-Sobolev solutions; singular convergence; life span
UR - http://eudml.org/doc/73522
ER -

References

top
  1. [1] Friedman ( A.). - Partial Differential Equations of Parabolic Type. Krieger, Malabar, FL1983. 
  2. [2] Kato ( T.). — Abstract Differential Equations and Nonlinear Mixed Problems. Fermian Lectures, Pisa, 1985. Zbl0648.35001MR930267
  3. [3] Lions ( J.L.). — Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969. Zbl0189.40603MR259693
  4. [4] Lions ( J.L.), Magenes ( E.). - Non-Homogeneous Boundary value Problems, Vol. I. Springer Verlag, New York, 1972. Zbl0223.35039
  5. [5] Lions ( J.L.), Magenes ( E.). - Non-Homogeneous Boundary value Problems, Vol. II. Springer Verlag, New York, 1972. Zbl0227.35001
  6. [6] Matsumura ( A.). — Global Existence and Asymptotics of the Solutions of Second Order Quasilinear Hyperbolic Equations with First Order Dissipation term. , Publ. RIMS Kyoto Univ., 13, 349-379 (1977). Zbl0371.35030MR470507
  7. [7] Milani ( A.). - Long Time Existence and Singular Perturbation Results for Quasilinear Hyperbolic Equations with Small Parameter and Dissipation Term. Non Linear An. TMA, 10/11 (1986), 1237-1248. Zbl0645.35064MR866256
  8. [8] Milani ( A.). - Global Existence via Singular Perturbations for Quasilinear Evolution Equations. Adv. Math. Sci. Appl., 6/2 (1996), 419-444. Zbl0868.35008MR1411976
  9. [9] Milani ( A.). — A Remark on the Sobolev Regularity of Classical Solutions to Uniformly Parabolic Equations. Math. Nachr., 199 (1999), 115-144. Zbl0962.35038MR1676322
  10. [10] Milani ( A.). - On the Construction of Compatible Data for Hyperbolic-Parabolic Initial-Boundary Value Problems. Rend. Sem. Mat. Univ. Trieste, 29 (1997), 167-188. Zbl0921.35013MR1658443
  11. [11] Yang ( H.), Milani ( A.). - On the Diffusion Phenomenon of Quasilinear Hyperbolic Flows. To appear on Bull. Sc. Math. 
  12. [12] Milani ( A.). - Global Existence via Singular Perturbations for Quasilinear Evolution Equations: the Initial-Boundary Value Problem. Preprint, 1999. MR1807450
  13. [13] Milani ( A.). - Sobolev Regularity for t &gt; 0 in Quasilinear Parabolic Equations. Preprint, 1999. MR1866198
  14. [14] Racke ( R.). - Lectures on Nonlinear Evolution Equations. Vieweg, Braunschweig, 1992. Zbl0811.35002MR1158463

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.