On singular perturbations for quasilinear IBV problems

Albert Milani

Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)

  • Volume: 9, Issue: 3, page 467-486
  • ISSN: 0240-2963

How to cite

top

Milani, Albert. "On singular perturbations for quasilinear IBV problems." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.3 (2000): 467-486. <http://eudml.org/doc/73522>.

@article{Milani2000,
author = {Milani, Albert},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {local Kato-Sobolev solutions; singular convergence; life span},
language = {eng},
number = {3},
pages = {467-486},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On singular perturbations for quasilinear IBV problems},
url = {http://eudml.org/doc/73522},
volume = {9},
year = {2000},
}

TY - JOUR
AU - Milani, Albert
TI - On singular perturbations for quasilinear IBV problems
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 3
SP - 467
EP - 486
LA - eng
KW - local Kato-Sobolev solutions; singular convergence; life span
UR - http://eudml.org/doc/73522
ER -

References

top
  1. [1] Friedman ( A.). - Partial Differential Equations of Parabolic Type. Krieger, Malabar, FL1983. 
  2. [2] Kato ( T.). — Abstract Differential Equations and Nonlinear Mixed Problems. Fermian Lectures, Pisa, 1985. Zbl0648.35001MR930267
  3. [3] Lions ( J.L.). — Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969. Zbl0189.40603MR259693
  4. [4] Lions ( J.L.), Magenes ( E.). - Non-Homogeneous Boundary value Problems, Vol. I. Springer Verlag, New York, 1972. Zbl0223.35039
  5. [5] Lions ( J.L.), Magenes ( E.). - Non-Homogeneous Boundary value Problems, Vol. II. Springer Verlag, New York, 1972. Zbl0227.35001
  6. [6] Matsumura ( A.). — Global Existence and Asymptotics of the Solutions of Second Order Quasilinear Hyperbolic Equations with First Order Dissipation term. , Publ. RIMS Kyoto Univ., 13, 349-379 (1977). Zbl0371.35030MR470507
  7. [7] Milani ( A.). - Long Time Existence and Singular Perturbation Results for Quasilinear Hyperbolic Equations with Small Parameter and Dissipation Term. Non Linear An. TMA, 10/11 (1986), 1237-1248. Zbl0645.35064MR866256
  8. [8] Milani ( A.). - Global Existence via Singular Perturbations for Quasilinear Evolution Equations. Adv. Math. Sci. Appl., 6/2 (1996), 419-444. Zbl0868.35008MR1411976
  9. [9] Milani ( A.). — A Remark on the Sobolev Regularity of Classical Solutions to Uniformly Parabolic Equations. Math. Nachr., 199 (1999), 115-144. Zbl0962.35038MR1676322
  10. [10] Milani ( A.). - On the Construction of Compatible Data for Hyperbolic-Parabolic Initial-Boundary Value Problems. Rend. Sem. Mat. Univ. Trieste, 29 (1997), 167-188. Zbl0921.35013MR1658443
  11. [11] Yang ( H.), Milani ( A.). - On the Diffusion Phenomenon of Quasilinear Hyperbolic Flows. To appear on Bull. Sc. Math. 
  12. [12] Milani ( A.). - Global Existence via Singular Perturbations for Quasilinear Evolution Equations: the Initial-Boundary Value Problem. Preprint, 1999. MR1807450
  13. [13] Milani ( A.). - Sobolev Regularity for t &gt; 0 in Quasilinear Parabolic Equations. Preprint, 1999. MR1866198
  14. [14] Racke ( R.). - Lectures on Nonlinear Evolution Equations. Vieweg, Braunschweig, 1992. Zbl0811.35002MR1158463

NotesEmbed ?

top

You must be logged in to post comments.