Inverse problems for periodic transport equations
Mustapha Mokhtar-Kharroubi; Ahmed Zeghal
Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)
- Volume: 9, Issue: 3, page 487-507
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMokhtar-Kharroubi, Mustapha, and Zeghal, Ahmed. "Inverse problems for periodic transport equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.3 (2000): 487-507. <http://eudml.org/doc/73523>.
@article{Mokhtar2000,
author = {Mokhtar-Kharroubi, Mustapha, Zeghal, Ahmed},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {neutron transport equations; inverse source problem},
language = {eng},
number = {3},
pages = {487-507},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Inverse problems for periodic transport equations},
url = {http://eudml.org/doc/73523},
volume = {9},
year = {2000},
}
TY - JOUR
AU - Mokhtar-Kharroubi, Mustapha
AU - Zeghal, Ahmed
TI - Inverse problems for periodic transport equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 3
SP - 487
EP - 507
LA - eng
KW - neutron transport equations; inverse source problem
UR - http://eudml.org/doc/73523
ER -
References
top- [1] Agoshkov ( V.I.). - An inverse problem of transport theory and properties of the reflection operator, Part. Diff. Equations27(6) (1991) 709-712. Zbl0804.35141MR1130284
- [2] Amirov ( A.Kh.). - On a class of inverse problems for kinetic equations, Soviet Math. Dokl.32(1) (1985) 175-178. Zbl0607.35085MR768969
- [3] Anikonov ( D.S.). - Multidimensional inverse problems for the transport equations, Part. Diff. Equations20(5) (1984) 608-614. Zbl0572.45012MR747361
- [4] Anikonov ( Y.E.) and Bubnov ( B.A.). — Inverse problems of transport theory, Soviet Math. Dokl.37 (1988) 497-499. Zbl0699.35251MR947226
- [5] Case ( K.M.). — Inverse problem in transport theory, Phys. Fluids16(10) (1973) 1607-1611. MR334781
- [6] Choulli ( M.). - Determination of spatially-dependent scattering function for overspecified boundary conditions, Transp. Theory Stat. Phys.22(1) (1993) 97-107. Zbl0778.45011MR1198880
- [7] Choulli ( M.) and Stefanov ( P.). - An inverse boundary value problem for the stationary transport equation, Osaka J. Math.36(1) (1998) 87-104. Zbl0998.35064MR1670750
- [8] Choulli ( M.) and Zeghal ( A.). — Laplace transform approach for an inverse problem , Transp. Theory Stat. Phys. 24(9) (1995) 1353-1367. Zbl0865.45009MR1362333
- [9] Mccormick ( N.J.). - Recent developments in inverse scattering transport methods, Transp. Theory Stat. Phys.13(1,2) (1984), 15-28. MR752128
- [10] Mccormick ( N.J.). - Methods for solving inverse problems for radiation transportan update, Transp. Theory Stat. Phys.15(6,7) (1986) 759-772. Zbl0619.35107MR880891
- [11] Donggeng ( G.). - A class of inverse problems in transport theory, Transp. Theory Stat. Phys.15(4) (1986) 476-502. Zbl0606.45001MR892043
- [12] Dressler ( K.). - Inverse problems in linear transport theory, Eur. J. Mech. B/Fluids8(4) (1989) 351-372. Zbl0683.76062MR1017752
- [13] Larsen ( E.W.). — Solution of multidimensional inverse transport problems, J. Math. Phys.25(1) (1984) 131-135. Zbl0541.76163MR728896
- [14] Mokhtar-Kharroubi ( M.). — Mathematical topics in neutron transport theory - New aspects, Series on Advances in Mathematics for Applied Sciences, Vol. 46, World Scientific, 1997. Zbl0997.82047MR1612403
- [15] Mokhtar-Kharroubi ( M.). — Problèmes inverses en théorie du transport, C. R. Acad. Sci.Paris, t. 318, Série 1 (1994) 43-46. Zbl0801.35149MR1260533
- [16] Mokhtar-Kharroubi ( M.). — Communication in 13th International Conference on Transport Theory, Riccione (Italy), May 10-14, 1993.
- [17] Natterer ( F.). — The mathematics of the computerized tomography, Wiley-Teubner, 1986. Zbl0617.92001MR856916
- [18] Natterer ( F.). - An inverse problem for a transport equation and integral geometry, Contemp. Math.113 (1990) 221-231. Zbl0737.35151MR1108656
- [19] Prilepko ( A.I.) and Volkov ( N.P.). — Inverse problems of finding parameters of a nonstationary kinetic transfer equation from supplementary information on traces of the unknown function, Part. Diff. Equations24(1) (1988) 107-115. Zbl0664.35077MR930164
- [20] Romanov ( V.G.). — Stability estimates in problems of recovering the attenuation coefficient and the scattering indicatrix for the transport equation, J. Inv. Ill-Posed Problems4(4) (1996) 297-305. Zbl0860.35146MR1403885
- [21] Romanov ( V.G.). — Stability estimates in the three-dimensional inverse problem for the transport equation, J. Inv. Ill-Posed Problems5(5) (1997) 463-476. Zbl0894.35130MR1604509
- [22] Sanchez ( R.) and Mccormick ( N.J.). — General solutions to inverse transport problems, J. Math. Phys.22(4) (1981) 847-855. Zbl0472.76090MR617334
- [23] Zeghal ( A.). — Problèmes inverses et régularité en théorie de transport, Thèse de Doctorat de l'université de Franche-Comté, 1995.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.