Inverse problems for periodic transport equations

Mustapha Mokhtar-Kharroubi; Ahmed Zeghal

Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)

  • Volume: 9, Issue: 3, page 487-507
  • ISSN: 0240-2963

How to cite

top

Mokhtar-Kharroubi, Mustapha, and Zeghal, Ahmed. "Inverse problems for periodic transport equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.3 (2000): 487-507. <http://eudml.org/doc/73523>.

@article{Mokhtar2000,
author = {Mokhtar-Kharroubi, Mustapha, Zeghal, Ahmed},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {neutron transport equations; inverse source problem},
language = {eng},
number = {3},
pages = {487-507},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Inverse problems for periodic transport equations},
url = {http://eudml.org/doc/73523},
volume = {9},
year = {2000},
}

TY - JOUR
AU - Mokhtar-Kharroubi, Mustapha
AU - Zeghal, Ahmed
TI - Inverse problems for periodic transport equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 3
SP - 487
EP - 507
LA - eng
KW - neutron transport equations; inverse source problem
UR - http://eudml.org/doc/73523
ER -

References

top
  1. [1] Agoshkov ( V.I.). - An inverse problem of transport theory and properties of the reflection operator, Part. Diff. Equations27(6) (1991) 709-712. Zbl0804.35141MR1130284
  2. [2] Amirov ( A.Kh.). - On a class of inverse problems for kinetic equations, Soviet Math. Dokl.32(1) (1985) 175-178. Zbl0607.35085MR768969
  3. [3] Anikonov ( D.S.). - Multidimensional inverse problems for the transport equations, Part. Diff. Equations20(5) (1984) 608-614. Zbl0572.45012MR747361
  4. [4] Anikonov ( Y.E.) and Bubnov ( B.A.). — Inverse problems of transport theory, Soviet Math. Dokl.37 (1988) 497-499. Zbl0699.35251MR947226
  5. [5] Case ( K.M.). — Inverse problem in transport theory, Phys. Fluids16(10) (1973) 1607-1611. MR334781
  6. [6] Choulli ( M.). - Determination of spatially-dependent scattering function for overspecified boundary conditions, Transp. Theory Stat. Phys.22(1) (1993) 97-107. Zbl0778.45011MR1198880
  7. [7] Choulli ( M.) and Stefanov ( P.). - An inverse boundary value problem for the stationary transport equation, Osaka J. Math.36(1) (1998) 87-104. Zbl0998.35064MR1670750
  8. [8] Choulli ( M.) and Zeghal ( A.). — Laplace transform approach for an inverse problem , Transp. Theory Stat. Phys. 24(9) (1995) 1353-1367. Zbl0865.45009MR1362333
  9. [9] Mccormick ( N.J.). - Recent developments in inverse scattering transport methods, Transp. Theory Stat. Phys.13(1,2) (1984), 15-28. MR752128
  10. [10] Mccormick ( N.J.). - Methods for solving inverse problems for radiation transportan update, Transp. Theory Stat. Phys.15(6,7) (1986) 759-772. Zbl0619.35107MR880891
  11. [11] Donggeng ( G.). - A class of inverse problems in transport theory, Transp. Theory Stat. Phys.15(4) (1986) 476-502. Zbl0606.45001MR892043
  12. [12] Dressler ( K.). - Inverse problems in linear transport theory, Eur. J. Mech. B/Fluids8(4) (1989) 351-372. Zbl0683.76062MR1017752
  13. [13] Larsen ( E.W.). — Solution of multidimensional inverse transport problems, J. Math. Phys.25(1) (1984) 131-135. Zbl0541.76163MR728896
  14. [14] Mokhtar-Kharroubi ( M.). — Mathematical topics in neutron transport theory - New aspects, Series on Advances in Mathematics for Applied Sciences, Vol. 46, World Scientific, 1997. Zbl0997.82047MR1612403
  15. [15] Mokhtar-Kharroubi ( M.). — Problèmes inverses en théorie du transport, C. R. Acad. Sci.Paris, t. 318, Série 1 (1994) 43-46. Zbl0801.35149MR1260533
  16. [16] Mokhtar-Kharroubi ( M.). — Communication in 13th International Conference on Transport Theory, Riccione (Italy), May 10-14, 1993. 
  17. [17] Natterer ( F.). — The mathematics of the computerized tomography, Wiley-Teubner, 1986. Zbl0617.92001MR856916
  18. [18] Natterer ( F.). - An inverse problem for a transport equation and integral geometry, Contemp. Math.113 (1990) 221-231. Zbl0737.35151MR1108656
  19. [19] Prilepko ( A.I.) and Volkov ( N.P.). — Inverse problems of finding parameters of a nonstationary kinetic transfer equation from supplementary information on traces of the unknown function, Part. Diff. Equations24(1) (1988) 107-115. Zbl0664.35077MR930164
  20. [20] Romanov ( V.G.). — Stability estimates in problems of recovering the attenuation coefficient and the scattering indicatrix for the transport equation, J. Inv. Ill-Posed Problems4(4) (1996) 297-305. Zbl0860.35146MR1403885
  21. [21] Romanov ( V.G.). — Stability estimates in the three-dimensional inverse problem for the transport equation, J. Inv. Ill-Posed Problems5(5) (1997) 463-476. Zbl0894.35130MR1604509
  22. [22] Sanchez ( R.) and Mccormick ( N.J.). — General solutions to inverse transport problems, J. Math. Phys.22(4) (1981) 847-855. Zbl0472.76090MR617334
  23. [23] Zeghal ( A.). — Problèmes inverses et régularité en théorie de transport, Thèse de Doctorat de l'université de Franche-Comté, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.