Formules pour la multiplicité et le nombre de Milnor d’un feuilletage sur ( 𝐂 2 , 0 )

Claus Hertling

Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)

  • Volume: 9, Issue: 4, page 655-670
  • ISSN: 0240-2963

How to cite

top

Hertling, Claus. "Formules pour la multiplicité et le nombre de Milnor d’un feuilletage sur $( \bf {C}^2, 0)$." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.4 (2000): 655-670. <http://eudml.org/doc/73531>.

@article{Hertling2000,
author = {Hertling, Claus},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {saturated foliation; singularity; Milnor number; formula for the multiplicity},
language = {fre},
number = {4},
pages = {655-670},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Formules pour la multiplicité et le nombre de Milnor d’un feuilletage sur $( \bf \{C\}^2, 0)$},
url = {http://eudml.org/doc/73531},
volume = {9},
year = {2000},
}

TY - JOUR
AU - Hertling, Claus
TI - Formules pour la multiplicité et le nombre de Milnor d’un feuilletage sur $( \bf {C}^2, 0)$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 4
SP - 655
EP - 670
LA - fre
KW - saturated foliation; singularity; Milnor number; formula for the multiplicity
UR - http://eudml.org/doc/73531
ER -

References

top
  1. [A'C] A'CAMPO ( N.). — La fonction zêta d'une monodromie. Comm. Math. Helv.50 (1975), 233-248. Zbl0333.14008MR371889
  2. [C-LN-S] Camacho ( C.), Lins Neto ( A.) and Sad ( P.). — Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geometry20 (1984), 143-174. Zbl0576.32020MR772129
  3. [C-S] Camacho ( C.) and Sad ( P.). — Invariant varieties through singularities of holomorphic vector fields. Annals of Math.115 (1982), 579-595. Zbl0503.32007MR657239
  4. [Ca] Camacho ( C.). — Quadratic forms and holomorphic foliations on singular surfaces. Math. Ann.282 (1988), 177-184. Zbl0657.32007MR963011
  5. [DH] Du Bois ( P.) et Hunault ( O.). - Classification des formes de Seifert rationnelles des germes de courbe plane. Ann. Inst. Fourier, Grenoble46 (1996), 371-410. Zbl0854.32021MR1393519
  6. [M-M] Mattei ( J.-F.) et Moussu ( R.). - Holonomie et intégrales premières. Ann. scient. Éc. Norm. Sup.13 (1980), 469-523. Zbl0458.32005MR608290
  7. [S-S-S] Schrauwen ( R.), Steenbrink ( J.H.M.) and Stevens ( J.). - Spectral pairs and the topology of curve singularities. In: Proc. Sympos. Pure Math.53, AMS, Providence RI, 1991, 305-328. Zbl0749.14003MR1141207

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.