Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three

Patrick Bonckaert; Vincent Naudot

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 4, page 595-617
  • ISSN: 0240-2963

How to cite

top

Bonckaert, Patrick, and Naudot, Vincent. "Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.4 (2001): 595-617. <http://eudml.org/doc/73559>.

@article{Bonckaert2001,
author = {Bonckaert, Patrick, Naudot, Vincent},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Dulac map; vector field; hyperbolic equilibrium point of saddle type; asymptotic expression},
language = {eng},
number = {4},
pages = {595-617},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three},
url = {http://eudml.org/doc/73559},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Bonckaert, Patrick
AU - Naudot, Vincent
TI - Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 4
SP - 595
EP - 617
LA - eng
KW - Dulac map; vector field; hyperbolic equilibrium point of saddle type; asymptotic expression
UR - http://eudml.org/doc/73559
ER -

References

top
  1. [1] Bonckaert ( P.). - On the continuous dependence of the smooth change of coordinates in parametrized normal forms theorems, Journ. Diff. Eq.106 (1993), 107-120. Zbl0788.58048MR1249179
  2. [2] Bonckaert ( P.). - Conjugacy of vector fields respecting additional properties, Journal of Dynamical and Control Systems3(1997),pp. 419-432. Zbl1157.37322MR1472359
  3. [3] Dumortier ( F.) and Roussarie ( R.). - On the saddle loop bifurcation. In Bifurcations of planar vector fields, proceedings Luminy 1989, volume 1455 of Lecture Notes in Mathematics, pages 44-73. Springer-Verlag, 1990. Zbl0731.34010MR1094377
  4. [4] Ilyashenko ( Y.) and Yakovenko ( S.). - Finite cyclicity of elementary polycycles. In Y. Ilyashenko and S. Yakovenko, editors, Concerning the Hilbert 16th Problem volume 165 of American Mathematical Society Translations Series 2, pages 21-95. American Mathematical Society, 1995. Zbl0828.34021MR1334340
  5. [5] IL'YASHENKO ( Yu.S.) and Yakovenko ( S.Yu.). - Finitely-smooth normal forms of local families of diffeomorphisms and vector fields, Russian Math. Surveys, 46:1 (1991), 1-43. Zbl0744.58006MR1109035
  6. [6] Homburg ( A.J.), Kokubu ( H.), Naudot ( V.). - "Homoclinic doubling cascades", "Archive for Rational Mechanics and Analysis", 160:3 (2001), 195-244. Zbl1073.37059MR1869442
  7. [7] Mourtada ( A.). - Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan mise sous forme normale. In Bifurcations of planar vector fields, proceedings Luminy 1989, volume 1455 of Lecture Notes in Mathematics, pages 272-314. Springer-Verlag, 1990. Zbl0719.58031MR1094384
  8. [8] Moussu ( R.). - Développement asymptotique de l'application retour d'un polycycle. In Dynamical Systems, Valparaiso 1986, volume 1331 of Lecture Notes in Mathematics, pages 140-149. Springer-Verlag, 1988. Zbl0659.58009MR961097
  9. [9] Roussarie ( R.) On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields. Bol. Soc. Bras. Mat., 17:67-101, 1986. Zbl0628.34032MR901596
  10. [10] Roussarie ( R.) and Rousseau ( C.). - Almost planar homoclinic loops in R3. Journal of Differential Equations, 126:1-47, 1996. Zbl0849.34036MR1382055
  11. [11] Rychlik ( M.R.). - Lorenz attractors through Shil'nikov-type bifurcation. Part I, Ergod. Th. & Dynam. Syst.10 (1990), 793-821. Zbl0715.58027
  12. [12] Sternberg ( S.). - On the structure of local homomorphisms of euclidean n-space, I, Am. J. Math.80 (1958), 623-31. Zbl0083.31406MR96854
  13. [13] Sternberg ( S.). - On the structure of local homomorphisms of euclidean n-space, II, Am. J. Math.81 (1959), 578-605. Zbl0211.56304MR109853

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.