On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes

Jean Bertoin; Marc Yor

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 1, page 33-45
  • ISSN: 0240-2963

How to cite

top

Bertoin, Jean, and Yor, Marc. "On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.1 (2002): 33-45. <http://eudml.org/doc/73570>.

@article{Bertoin2002,
author = {Bertoin, Jean, Yor, Marc},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {exponential functional; moment problem; self-similar Markov processes},
language = {eng},
number = {1},
pages = {33-45},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes},
url = {http://eudml.org/doc/73570},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Bertoin, Jean
AU - Yor, Marc
TI - On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 1
SP - 33
EP - 45
LA - eng
KW - exponential functional; moment problem; self-similar Markov processes
UR - http://eudml.org/doc/73570
ER -

References

top
  1. [1] Bertoin ( J.). — Lévy Processes, Cambridge University Press, 1996. Zbl0861.60003MR1406564
  2. [2] Bertoin ( J.), Biane ( Ph.) and Yor ( M.). — Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions, to appear in Proceedings Stochastic Analysis, Ascona, Birkhäuser, 2002. Zbl1056.60046MR2096279
  3. [3] Bertoin ( J.) and Caballero ( M.-E.).— Entrance from 0+ for increasing semi-stable Markov processes, Bernoulli8 (2002), 195-205. Zbl1002.60032MR1895890
  4. [4] Bertoin ( J.) and Yor ( M.). — Entrance laws of self-similar Markov processes and exponential functionals of Lévy processes, Potential Analysis17 (2002), 389-400. Zbl1004.60046MR1918243
  5. [5] Bertoin ( J.) and Yor ( M.). — On subordinators, self-similar Markov processes, and some factorizations of the exponential law, Elect. Commun. Probab.6 (2001), 95-106. Available at http://www.math.washington.edu/∼ejpecp/ecpficontents.html. Zbl1024.60030MR1871698
  6. [6] Carmona ( P.), Petit ( F.) and Yor ( M.). — Sur les fonctionnelles exponentielles de certains processus de Lévy, Stochastics and Stochastics Reports47 (1994), 71-101. Zbl0830.60072MR1787143
  7. [7] Carmona ( P.), Petit ( F.) and Yor ( M.). — On the distribution and asymptotic results for exponential functionals of Lévy process, in: M.Yor (editor) Exponential functionals and principal values related to Brownian Motion, (1997), pp. 73-121. Biblioteca de la Revista Matemática Iberoamericana. Zbl0905.60056MR1648657
  8. [8] Carmona ( P.), Petit ( F.) and Yor ( M.). — Exponential functionals of Lévy processes, O. Barndorff-Nielsen, T. Mikosch and S. Resnick (editors), Lévy processes : theory and applications, (2001), pp. 41-55, Birkhäuser. Zbl0979.60038MR1833691
  9. [9] Dufresne ( D.). — The distibution of a perpetuity, with applications to risk theory and pension funding, Scand. Actuar. J.1-2 (1990), 39-79. Zbl0743.62101MR1129194
  10. [10] Émery ( M.). — On the Azéma martingales, Séminaire de ProbabilitésXXIII, Lecture Notes in Maths.1372, Springer, 1989. Zbl0753.60045MR1022899
  11. [11] Feller ( W.E.). — An introduction to probability theory and its applications, 2nd edn, vol. 2. Wiley, New-York, 1971. Zbl0219.60003
  12. [12] Gjessing ( H.K.) and Paulsen ( J.). — Present value distributions with application to ruin theory and stochastic equations. Stochastic Process. Appl.71 (1997), 123-144. Zbl0943.60098MR1480643
  13. [13] Hawkes ( J.). — On the potential theory of subordinators. Z. Wahrscheinlichkeitstheorie verw. Gebiete24 (1975), 167-193. Zbl0402.60074MR388553
  14. [14] Jain ( N.C.) and Pruitt ( W.E.). — Lower tail probabilities estimates for subordinators and nondecreasing random walks, Ann. Probab.15 (1987), 75-102. Zbl0617.60023MR877591
  15. [15] Krein ( M.G.). — On an extrapolation problem due to Kolmogorov. Dokl. Akad. Nauk. SSSR46 (1945), 306-309. Zbl0063.03356MR12700
  16. [16] Lamperti ( J.W.). — Semi-stable Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete22 (1972), 205-225. Zbl0274.60052MR307358
  17. [17] Lubensky ( D.K.) and Nelson ( D.R.).—Single molecule statistics and the polynucleotide unzipping transition, Preprint, 2001. Available at arXiv:cond-mat/0107423v1. 
  18. [18] Pakes ( A.G.). — Remarks on converse Carleman and Krein criteria for the classical moment problem, J. Austral. Math. Soc.71 (2001), 81-104. Zbl0992.44003MR1840495
  19. [19] Pedersen ( H.L.). — On Krein's theorem for indeterminacy of the classical moment problem, J. Approx. Theor.95 (1998), 90-100. Zbl0924.44009MR1645978
  20. [20] Pollack ( M.) and Siegmund ( D.).— A diffusion process and its applications to detecting a change in the drift of Brownian motion, Biometrika72 (1985), 267-280. Zbl0571.60084MR801768
  21. [21] Sato ( K.-I.). — Lévy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, 1999. Zbl0973.60001MR1739520
  22. [22] Simon ( B.). — The classical moment problem as a self adjoint finite difference operator, Adv. in Maths.137 (1998), 82-203. Zbl0910.44004MR1627806
  23. [23] Stieltjes ( T.J.). — Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse8 (1894-95), 1-122 and 9, 5-47. JFM25.0326.01
  24. [24] Stoyanov ( J.). — Krein condition in probabilistic moment problems, Bernoulli6 (2000), 939-949. Zbl0971.60017MR1791909
  25. [25] Urbanik ( K.). - Functionals of transient stochastic processes with independent increments, Studia Math.103 (3) (1992), 299-315. Zbl0809.60068MR1202015
  26. [26] Williams ( D.). - Diffusions, Markov processes, and martingales vol. 1: Foundations, Wiley, New-York, 1979. Zbl0402.60003MR531031
  27. [27] Yor ( M.). — Sur certaines fonctionnelles exponentielles du mouvement brownien réel, J. Appl. Probab.29 (1992), 202-208. Zbl0758.60085MR1147781
  28. [28] Yor ( M.). — Some aspects of Brownian motion, Part II : Some recent martingale problems, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1997. Zbl0880.60082MR1442263
  29. [29] Yor ( M.). — Exponential functionals of Brownian motion and related processes, Springer Finance, Berlin, 2001. Zbl0999.60004MR1854494

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.