Links between binary and multi-category logit item response models and quasi-symmetric loglinear models

Alan Agresti

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 4, page 443-454
  • ISSN: 0240-2963

How to cite

top

Agresti, Alan. "Links between binary and multi-category logit item response models and quasi-symmetric loglinear models." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.4 (2002): 443-454. <http://eudml.org/doc/73587>.

@article{Agresti2002,
author = {Agresti, Alan},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {4},
pages = {443-454},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Links between binary and multi-category logit item response models and quasi-symmetric loglinear models},
url = {http://eudml.org/doc/73587},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Agresti, Alan
TI - Links between binary and multi-category logit item response models and quasi-symmetric loglinear models
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 4
SP - 443
EP - 454
LA - eng
UR - http://eudml.org/doc/73587
ER -

References

top
  1. [1] Agresti ( A.). — A simple diagonals-parameter symmetry and quasisymmetry model, Statistics and Probability Letters, 1 (1983), 313-316. Zbl0528.62050MR721443
  2. [2] Agresti ( A.). - Computing conditional maximum likelihood estimates for generalized Rasch models using simple loglinear models with diagonals parameters, Scandinavian Journal of Statistics, 20 (1993a), 63-72. Zbl0770.62095MR1221962
  3. [3] Agresti ( A.). - Distribution-free fitting of logit models with random effects for repeated categorical responses, Statistics in Medicine, 12 (1993b), 1969-1987. 
  4. [4] Agresti ( A.). - Simple capture-recapture models permitting unequal catchability and variable sampling effort, Biometrics, 50 (1994), 494-500. 
  5. [5] Agresti ( A.). - Logit models and related quasi-symmetric loglinear models for comparing responses to similar items in a survey, Sociological Methods in Research, 50 (1995), 68-95. 
  6. [6] Agresti ( A.). - An Introduction to Categorical Data Analysis, Wiley, New York, 1996. Zbl0868.62008MR1394195
  7. [7] Agresti ( A.). - A model for repeated measurements of a multivariate binary response, Journal of the American Statistical Association, 92 (1997), 315-321. Zbl0890.62087
  8. [8] Agresti ( A.), Lang ( J.B.). - Quasi-symmetric latent class models, with application to rater agreement, Biometrics, 49 (1993a), 131-139. 
  9. [9] Agresti ( A.), Lang ( J.B.). — A Proportional odds model with subject-specific effects for repeated ordered categorical responses, Biometrika, 80 (1993b), 527-534. Zbl0800.62750MR1248018
  10. [10] Andersen ( E.B.). - Conditional inference for multiple-choice questionnaires, British Journal of Mathematical and Statistical Psychology, 26 (1973), 31-44. MR451601
  11. [11] Andrich ( D.). - A rating formulation for ordered response categories, Psychometrika, 43 (1978), 561-573. Zbl0438.62086
  12. [12] Becker ( M.P.). - Quasisymmetric models for the analysis of square contingency tables, Journal of the Royal Statistical Society, Series B, 52 (1990), 369-378. MR1064423
  13. [13] Bishop ( Y.M.M.), Fienberg ( S.E.), Holland ( P.W.). - Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, MA, 1975. Zbl0332.62039MR381130
  14. [14] Caussinus ( H.). - Contribution à l'analyse statistique des tableaux de corrélation, Annales de la Faculté des Sciences de l'Université de Toulouse, 29 (année 1965), (1966), 77-183. Zbl0168.39904MR242341
  15. [15] Conaway ( M.). - Analysis of repeated categorical measurements with conditional likelihood methods, Journal of the American Statistical Association, 84 (1989), 53-62. MR999664
  16. [16] Darroch ( J.N.). - The Mantel-Haenszel test and tests of marginal symmetry; fixed-effects and mixed models for a categorical response, International Statistical Review, 49 (1981), 285-307. Zbl0484.62067MR651475
  17. [17] Darroch ( J.N.), Fienberg ( S.E.), Glonek ( G.F.V.), Junker ( B.W.). — A Three-sample multiple-recapture approach to census population estimation with heterogeneous catchability, Journal of the American Statistical Association, 88 (1993), 1137-1148. 
  18. [18] Darroch ( J.N.), Mccloud ( P.I.). - Category distinguishability and observer agreement, The Australian Journal of Statistics, 28 (1986), 371-388. Zbl0609.62140MR876747
  19. [19] De Leeuw ( J.), Verhelst ( N.). - Maximum likelihood estimation in generalized Rasch models, Journal of Educational Statistics, 11 (1986), 183-196. 
  20. [20] Duncan ( O.D.). - Rasch measurement: further examples and discussion, in Turner Charles F. and Martin Elizabeth, editors, Surveying Subjective Phenomena, volume 2, chapter 12, pages 367-403, Russell Sage Foundation, New York, 1984. 
  21. [21] Erosheva ( E.E.), Fienberg ( S.E.), Junker ( B.J.). - Alternative statistical models and representations for large sparse multi-dimensional contingency tables, Annales de la Faculté des Sciences de L'Université de Toulouse, Mathématiques, 2002, This issue. Zbl1042.62057MR2032354
  22. [22] Fienberg ( S.E.). - Recent advances in theory and methods for the analysis of categorical data: Making the link to statistical practice, in Bulletin of the International Statistical Institute, volume 49, Book 2 (1981), 763-791. Zbl0521.62048MR820977
  23. [23] Fienberg ( S.E.), Johnson ( M.S.), Junker ( B.W.). - Classical multilevel and Bayesian approaches to population size estimation using multiple lists, Journal of the Royal Statistical Society, Series A, 162 (1999), 383-405. 
  24. [24] Fienberg ( S.E.), Larntz ( K.). - Loglinear representation for paired and multiple comparisons models, Biometrika, 63 (1976), 245-254. Zbl0339.62051MR431541
  25. [25] Fienberg ( S.E.), Meyer ( M.M.). - Loglinear models and categorical data analysis with psychometric and econometric applications, Journal of Econometrics, 22 (1983), 191-214. Zbl0511.62057MR719131
  26. [26] Fischer ( G.W.), Kamlet ( M.S.), Fienberg ( S.E.), Schkade ( D.). - Risk preferences for gains and losses in multiple objective decisionmaking, Management Science, 32 (1986), 1065-1086. 
  27. [27] Goodman ( L.A.). - Multiplicative models for square contingency tables with ordered categories, Biometrika, 66 (1979), 413-418. 
  28. [28] Goodman ( L.A.). - Contributions to the statistical analysis of contingency tables : Notes on quasi-symmetry, quasi-independence, log-linear models, log-bilinear models, and correspondence analysis models, Annales de la Faculté des Sciences de l'Université de Toulouse, 2002, This issue. Zbl1122.62316MR2032356
  29. [29] Hatzinger ( R.). - The Rasch model, some extensions and their relation to the class of generalized linear models, in Statistical Modelling: Proceedings of GLIM89 and the 4th International Workshop on Statistical Modelling, volume 57 of Lecture Notes in Statistics, Berlin, Springer, 1989. Zbl0717.62058
  30. [30] Hedeker ( D.), Gibbons ( R.D.). - A random-effects ordinal regression model for multilevel analysis, Biometrics, 50 (1994), 933-944. Zbl0826.62049
  31. [31] Hout ( M.), Duncan ( O.D.), Sobel ( M.E.). - Association and heterogeneity : Structural models of similarities and differences, Sociological Methodology, 17 (1987), 145-184. 
  32. [32] Kelderman ( H.). - Loglinear Rasch model tests, Psychometrika, 49 (1984), 223-245. Zbl0573.62097
  33. [33] Kelderman ( H.), Rijkes ( C.P.M.). - Loglinear multidimensional IRT models for polytomously scored items, Psychometrika, 59 (1994), 149-176. Zbl0825.62936
  34. [34] Lang ( J.B.), Agresti ( A.). - Simultaneously modeling joint and marginal distributions of multivariate categorical responses, Journal of the American Statistical Association, 89 (1994), 625-632. Zbl0799.62063
  35. [35] Lindsay ( B.), Clogg ( C.C.), Grego ( J.). - Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis, Journal of the American Statistical Association, 86 (1991), 96-107. Zbl0735.62107MR1137102
  36. [36] Masters ( G.N.). - A Rasch model for partial credit scoring, Psychometrika, 47 (1982), 149-174. Zbl0493.62094
  37. [37] Mccullagh ( P.). - A logistic model for paired comparisons with ordered categorical data, Biometrika, 64 (1977), 449-453. Zbl0374.62069MR478469
  38. [38] Mccullagh ( P.). - Some applications of quasisymmetry, Biometrika, 69 (1982), 303-308. Zbl0497.62051MR671967
  39. [39] Neuhaus ( J.M.), Kalbfleisch ( J.D.), Hauck ( W.W.). - Conditions for consistent estimation in mixed-effects models for binary matched-pairs data, Canadian Journal of Statistics, 22 (1994), 139-148. Zbl0800.62113MR1271451
  40. [40] Rasch ( G.). - On general laws and the meaning of measurement in psychology, in J. Neyman, editor, Proceedings of the 4th Berkeley Symp. Math. Statist. Probab., volume 4, pages 321-333, Berkeley, 1961, University of California Press. Zbl0107.36805MR135196
  41. [41] Samejima ( F.). - Estimation of latent ability using a response pattern of graded scores, volume 17, Psychometrika, Monograph Supplement, Psychometric Society, Iowa City, 1969. 
  42. [42] Ten Have ( T.R.), Becker ( M.P.). — Multivariate contingency tables and the analysis of exchangeability, Biometrics, 51 (1995), 1001-1016. Zbl0867.62084
  43. [43] Tjur ( T.). - A Connection between Rasch's Item analysis model and a multiplicative Poisson model, Scandinavian Journal of Statistics, 9 (1982), 23-30. Zbl0484.62115MR651857
  44. [44] Tutz ( G.). - Sequential item response models with an ordered response, British Journal of Mathematical and Statistical Psychology, 43 (1990), 39-55. Zbl0718.62263MR1065199

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.