The analysis of symmetry and asymmetry : orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables

Sadao Tomizawa; Kouji Tahata

Journal de la société française de statistique (2007)

  • Volume: 148, Issue: 3, page 3-36
  • ISSN: 1962-5197

Abstract

top
For the analysis of square contingency tables, Caussinus (1965) proposed the quasi-symmetry model and gave the theorem that the symmetry model holds if and only if both the quasi-symmetry and the marginal homogeneity models hold. Bishop, Fienberg and Holland (1975, p.307) pointed out that the similar theorem holds for three-way tables. Bhapkar and Darroch (1990) gave the similar theorem for general multi-way tables. The purpose of this paper is (1) to review some topics on various symmetry models, which include the models, the decompositions of models, and the measures of departure from models, on various symmetry and asymmetry, and (2) to show that for multi-way tables, the likelihood ratio statistic for testing goodness-of-fit of the complete symmetry model is asymptotically equivalent to the sum of those for testing the quasi-symmetry model with some order and the marginal symmetry model with the corresponding order.

How to cite

top

Tomizawa, Sadao, and Tahata, Kouji. "The analysis of symmetry and asymmetry : orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables." Journal de la société française de statistique 148.3 (2007): 3-36. <http://eudml.org/doc/93465>.

@article{Tomizawa2007,
abstract = {For the analysis of square contingency tables, Caussinus (1965) proposed the quasi-symmetry model and gave the theorem that the symmetry model holds if and only if both the quasi-symmetry and the marginal homogeneity models hold. Bishop, Fienberg and Holland (1975, p.307) pointed out that the similar theorem holds for three-way tables. Bhapkar and Darroch (1990) gave the similar theorem for general multi-way tables. The purpose of this paper is (1) to review some topics on various symmetry models, which include the models, the decompositions of models, and the measures of departure from models, on various symmetry and asymmetry, and (2) to show that for multi-way tables, the likelihood ratio statistic for testing goodness-of-fit of the complete symmetry model is asymptotically equivalent to the sum of those for testing the quasi-symmetry model with some order and the marginal symmetry model with the corresponding order.},
author = {Tomizawa, Sadao, Tahata, Kouji},
journal = {Journal de la société française de statistique},
keywords = {association model; decomposition; independence; likelihood ratio statistic; marginal homogeneity; marginal symmetry; measure; model; orthogonality; quasi-symmetry; separability; square contingency table; symmetry},
language = {eng},
number = {3},
pages = {3-36},
publisher = {Société française de statistique},
title = {The analysis of symmetry and asymmetry : orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables},
url = {http://eudml.org/doc/93465},
volume = {148},
year = {2007},
}

TY - JOUR
AU - Tomizawa, Sadao
AU - Tahata, Kouji
TI - The analysis of symmetry and asymmetry : orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables
JO - Journal de la société française de statistique
PY - 2007
PB - Société française de statistique
VL - 148
IS - 3
SP - 3
EP - 36
AB - For the analysis of square contingency tables, Caussinus (1965) proposed the quasi-symmetry model and gave the theorem that the symmetry model holds if and only if both the quasi-symmetry and the marginal homogeneity models hold. Bishop, Fienberg and Holland (1975, p.307) pointed out that the similar theorem holds for three-way tables. Bhapkar and Darroch (1990) gave the similar theorem for general multi-way tables. The purpose of this paper is (1) to review some topics on various symmetry models, which include the models, the decompositions of models, and the measures of departure from models, on various symmetry and asymmetry, and (2) to show that for multi-way tables, the likelihood ratio statistic for testing goodness-of-fit of the complete symmetry model is asymptotically equivalent to the sum of those for testing the quasi-symmetry model with some order and the marginal symmetry model with the corresponding order.
LA - eng
KW - association model; decomposition; independence; likelihood ratio statistic; marginal homogeneity; marginal symmetry; measure; model; orthogonality; quasi-symmetry; separability; square contingency table; symmetry
UR - http://eudml.org/doc/93465
ER -

References

top
  1. [1] Agresti A. (1983a). A survey of strategies for modeling cross-classifications having ordinal variables. Journal of the American Statistical Association, 78, 184-198. Zbl0508.62047MR696864
  2. [2] Agresti A. (1983b). Testing marginal homogeneity for ordinal categorical variables. Biometrics, 39, 505-510. 
  3. [3] Agresti A. (1983c). A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics and Probability Letters, 1, 313-316. Zbl0528.62050MR721443
  4. [4] Agresti A. (1984). Analysis of Ordinal Categorical Data. Wiley, New York. Zbl0647.62052MR747468
  5. [5] Agresti A. (1988). A model for agreement between ratings on an ordinal scale. Biometrics, 44, 539-548. Zbl0707.62227
  6. [6] Agresti A. (1989). An agreement model with kappa as parameter. Statistics and Probability Letters, 7, 271-273. 
  7. [7] Agresti A. (1995). Logit models and related quasi-symmetric log-linear models for comparing responses to similar items in a survey. Sociological Methods and Research, 24, 68-95. 
  8. [8] Agresti A. (2002a). Categorical Data Analysis, 2nd edition. Wiley, New York. Zbl0716.62001MR1044993
  9. [9] Agresti A. (2002b). Links between binary and multi-category logit item response models and quasi-symmetric loglinear models. Annales de la Faculté des Sciences de Toulouse, 11, 443-454. Zbl1044.62117MR2032351
  10. [10] Agresti A. and Lang J. B. (1993). Quasi-symmetric latent class models, with application to rater agreement. Biometrics, 49, 131-139. 
  11. [11] Agresti A. and Natarajan R. (2001). Modeling clustered ordered categorical data: A survey. International Statistical Review, 69, 345-371. Zbl1213.62106
  12. [12] Aitchison J. (1962). Large-sample restricted parametric tests. Journal of the Royal Statistical Society, Series B, 24, 234-250. Zbl0113.13604MR140164
  13. [13] Andersen E. B. (1994). The Statistical Analysis of Categorical Data, 3rd edition. Springer, Berlin. Zbl0805.62002
  14. [14] Bartolucci F., Forcina A. and Dardanoni V. (2001). Positive quadrant dependence and marginal modeling in two-way tables with ordered margins. Journal of the American Statistical Association, 96, 1497-1505. Zbl1073.62542MR1946593
  15. [15] Becker M. P. (1990). Quasisymmetric models for the analysis of square contingency tables. Journal of the Royal Statistical Society, Series B, 52, 369-378. MR1064423
  16. [16] Bhapkar V. P. (1966). A note on the equivalence of two test criteria for hypotheses in categorical data. Journal of the American Statistical Association, 61, 228-235. Zbl0147.18402MR193708
  17. [17] Bhapkar V. P. (1979). On tests of marginal symmetry and quasi-symmetry in two and three-dimensional contingency tables. Biometrics, 35, 417-426. Zbl0419.62045MR535778
  18. [18] Bhapkar V. P. and Darroch J. N. (1990). Marginal symmetry and quasi symmetry of general order. Journal of Multivariate Analysis, 34, 173-184. Zbl0735.62057MR1073104
  19. [19] Bishop Y. M. M., Fienberg S. E. and Holland P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge, Massachusetts. Zbl0332.62039MR381130
  20. [20] Bowker A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association, 43, 572-574. Zbl0032.17500
  21. [21] Bradley R. A. and Terry M. E. (1952). Rank analysis of incomplete block designs I. The method of paired comparisons. Biometrika, 39, 324-345. Zbl0047.12903MR70925
  22. [22] Caussinus H. (1965). Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse, 29, 77-182. Zbl0168.39904MR242341
  23. [23] Caussinus H. (2002). Some concluding observations. Annales de la Faculté des Sciences de Toulouse, 11, 587-591. MR1508502
  24. [24] Caussinus H. and Thélot C. (1976). Note complémentaire sur l’analyse statistique des migrations. Annales de l’INSEE, 22-23, 135-146. 
  25. [25] Chuang C., Gheva D. and Odoroff C. (1985). Methods for diagnosing multiplicative-interaction models for two-way contingency tables. Communications in Statistics-Theory and Methods, 14, 2057-2080. Zbl0591.62052MR812358
  26. [26] Clogg C. C. and Shihadeh E. S. (1994). Statistical Models for Ordinal Variables. Sage Publications, California. MR1304491
  27. [27] Cohen J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46. 
  28. [28] Constantine A. G. and Gower J. C. (1978). Graphical representation of asymmetric matrices. Applied Statistics, 27, 297-304. Zbl0436.62049MR534997
  29. [29] Cressie N. A. C. and Read T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society, Series B, 46, 440-464. Zbl0571.62017MR790631
  30. [30] Darroch J. N. and McCloud P. I. (1986). Category distinguishability and observer agreement. Australian Journal of Statistics, 28, 371-388. Zbl0609.62140MR876747
  31. [31] Darroch J. N. and Silvey S. D. (1963). On testing more than one hypothesis. Annals of Mathematical Statistics, 34, 555-567. Zbl0115.14003MR148173
  32. [32] Dossou-Gbété S. and Grorud A. (2002). Biplots for matched two-way tables. Annales de la Faculté des Sciences de Toulouse, 11, 469-483. Zbl1042.62056MR2032353
  33. [33] Erosheva E. A., Fienberg S. E. and Junker B. W. (2002). Alternative statistical models and representations for large sparse multi-dimensional contingency tables. Annales de la Faculté des Sciences de Toulouse, 11, 485-505. Zbl1042.62057MR2032354
  34. [34] Everitt B. S. (1992). The Analysis of Contingency Tables, 2nd edition. Chapman and Hall, London. Zbl0803.62047MR1214789
  35. [35] De Falguerolles A. and van der Heijden, P. G. M. (2002). Reduced rank quasi-symmetry and quasi-skew symmetry: a generalized bi-linear model approach. Annales de la Faculté des Sciences de Toulouse, 11, 507-524. Zbl1044.62081MR2032355
  36. [36] Gilula Z. and Haberman S. J. (1988). The analysis of multivariate contingency tables by restricted canonical and restricted association models. Journal of the American Statistical Association, 83, 760-771. Zbl0662.62063MR963804
  37. [37] Goodman L. A. (1972). Some multiplicative models for the analysis of cross-classified data. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 1, 649-696. Zbl0248.62032MR400611
  38. [38] Goodman L. A. (1979a). Multiplicative models for square contingency tables with ordered categories. Biometrika, 66, 413-418. 
  39. [39] Goodman L. A. (1979b). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74 537-552. MR548257
  40. [40] Goodman L. A. (1981a). Association models and canonical correlation in the analysis of cross-classifications having ordered categories. Journal of the American Statistical Association, 76, 320-334. MR624334
  41. [41] Goodman L. A. (1981b). Association models and the bivariate normal for contingency tables with ordered categories. Biometrika, 68, 347-355. Zbl0477.62038MR626393
  42. [42] Goodman L. A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: association models, correlation models, and asymmetry models for contingency tables with or without missing entries. Annals of Statistics, 13, 10-69. Zbl0613.62070MR773152
  43. [43] Goodman L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables. International Statistical Review, 54, 243-309. Zbl0611.62060MR963345
  44. [44] Goodman L. A. (2002). Contributions to the statistical analysis of contingency tables: Notes on quasi-symmetry, quasi-independence, log-linear models, log-bilinear models, and correspondence analysis models. Annales de la Faculté des Sciences de Toulouse, 11, 525-540. Zbl1122.62316MR2032356
  45. [45] Gower J. C. (1977). The analysis of asymmetry and orthogonality. In Recent Developments in Statistics, J. R. Barra et al. ed., North-Holland, Amsterdam, 109-123. Zbl0366.62058MR480599
  46. [46] Greenacre M. (2000). Correspondence analysis of square asymmetric matrices. Applied Statistics, 49, 297-310. Zbl0959.62056MR1824542
  47. [47] Grizzle J. E., Starmer C. F. and Koch G. G. (1969). Analysis of categorical data by linear models. Biometrics, 25, 489-504. Zbl1149.62317MR381144
  48. [48] Haber M. (1985). Maximum likelihood methods for linear and log-linear models in categorical data. Computational Statistics and Data Analysis, 3, 1-10. Zbl0586.62084MR812132
  49. [49] Haberman S. J. (1979). Analysis of Qualitative Data, Volume 2. Academic Press, New York. 
  50. [50] Ireland C. T., Ku H. H. and Kullback S. (1969). Symmetry and marginal homogeneity of an r × r contingency table. Journal of the American Statistical Association, 64, 1323-1341. MR251877
  51. [51] Lang J. B. (1996). On the partitioning of goodness-of-fit statistics for multivariate categorical response models. Journal of the American Statistical Association, 91, 1017-1023. Zbl0882.62051MR1424604
  52. [52] Lang J. B. and Agresti A. (1994). Simultaneously modeling joint and marginal distributions of multivariate categorical responses. Journal of the American Statistical Association, 89, 625-632. Zbl0799.62063
  53. [53] Lovison G. (2000). Generalized symmetry models for hypercubic concordance tables. International Statistical Review, 68, 323-338. Zbl1107.62335
  54. [54] McCullagh P. (1977). A logistic model for paired comparisons with ordered categories. Biometrika, 64, 449-453. Zbl0374.62069MR478469
  55. [55] McCullagh P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika, 65, 413-418. Zbl0402.62032
  56. [56] McCullagh P. (1982). Some applications of quasisymmetry. Biometrika, 69, 303-308. Zbl0497.62051MR671967
  57. [57] McCullagh P. (2002). Quasi-symmetry and representation theory. Annales de la Faculté des Sciences de Toulouse, 11, 541-561. Zbl1042.62058MR2032357
  58. [58] Miyamoto N., Niibe K. and Tomizawa S. (2005). Decompositions of marginal homogeneity model using cumulative logistic models for square contingency tables with ordered categories. Austrian Journal of Statistics, 34, 361-373. 
  59. [59] Miyamoto N., Ohtsuka W. and Tomizawa S. (2004). Linear diagonals-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables with ordered categories. Biometrical Journal, 46, 664-674. MR2108610
  60. [60] Miyamoto N., Tahata K., Ebie H. and Tomizawa S. (2006). Marginal inhomogeneity models for square contingency tables with nominal categories. Journal of Applied Statistics, 33, 203-215. Zbl1106.62063MR2224352
  61. [61] Patil G. P. and Taillie C. (1982). Diversity as a concept and its measurement. Journal of the American Statistical Association, 77, 548-561. Zbl0511.62113MR675883
  62. [62] Plackett P. L. (1981). The Analysis of Categorical Data, 2nd edition. Charles Griffin, London. Zbl0479.62046
  63. [63] Rao C. R. (1973). Linear Statistical Inference and Its Applications, 2nd edition. Wiley, New York. Zbl0256.62002MR346957
  64. [64] Read C. B. (1977). Partitioning chi-square in contingency table: A teaching approach. Communications in Statistics-Theory and Methods, 6, 553-562. Zbl0365.62043MR440767
  65. [65] Read T. R. C. and Cressie N. A. C. (1988). Goodness-of-Fit Statistics for Discrete Multivariate Data. Springer, New York. Zbl0663.62065MR955054
  66. [66] Stuart A. (1953). The estimation and comparison of strengths of association in contingency tables. Biometrika, 40, 105-110. Zbl0050.36405MR56240
  67. [67] Stuart A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42, 412-416. Zbl0066.12502MR72413
  68. [68] Tahata K., Katakura S. and Tomizawa S. (2007). Decompositions of marginal homogeneity model using cumulative logistic models for multi-way contingency tables. Revstat, 5, 163-176. Zbl05217612MR2365938
  69. [69] Tahata K., Miyamoto N. and Tomizawa S. (2004). Measure of departure from quasi-symmetry and Bradley-Terry models for square contingency tables with nominal categories. Journal of the Korean Statistical Society, 33, 129-147. MR2059211
  70. [70] Tahata K. and Tomizawa S. (2006). Decompositions for extended double symmetry model in square contingency tables with ordered categories. Journal of the Japan Statistical Society, 36, 91-106. Zbl1134.62341MR2266419
  71. [71] Tanner M. A. and Young M. A. (1985). Modeling agreement among raters. Journal of the American Statistical Association, 80, 175-180. 
  72. [72] Tomizawa S. (1984). Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society, 14, 35-42. Zbl0556.62031MR765026
  73. [73] Tomizawa S. (1985a). Analysis of data in square contingency tables with ordered categories using the conditional symmetry model and its decomposed models. Environmental Health Perspectives, 63, 235-239. 
  74. [74] Tomizawa S. (1985b). The decompositions for point-symmetry models in two-way contingency tables. Biometrical Journal, 27, 895-905. Zbl0579.62037MR872764
  75. [75] Tomizawa S. (1987). Diagonal weighted marginal homogeneity models and decompositions for linear diagonals-parameter symmetry model. Communications in Statistics-Theory and Methods, 16, 477-488. Zbl0655.62062MR886358
  76. [76] Tomizawa S. (1989). Decompositions for conditional symmetry model into palindromic symmetry and modified marginal homogeneity models. Australian Journal of Statistics, 31, 287-296. Zbl0707.62117MR1039416
  77. [77] Tomizawa S. (1992a). A decomposition of conditional symmetry model and separability of its test statistic for square contingency tables. Sankhyā, Series B, 54, 36-41. Zbl0781.62087MR1192083
  78. [78] Tomizawa S. (1992b). Multiplicative models with further restrictions on the usual symmetry model. Communications in Statistics-Theory and Methods, 21, 693-710. Zbl0800.62297MR1173718
  79. [79] Tomizawa S. (1992c). An agreement model having structure of symmetry plus main-diagonal equiprobability. Journal of the Korean Statistical Society, 21, 179-185. 
  80. [80] Tomizawa S. (1993a). Diagonals-parameter symmetry model for cumulative probabilities in square contingency tables with ordered categories. Biometrics, 49, 883-887. Zbl0800.62296MR1243499
  81. [81] Tomizawa S. (1993b). Orthogonal decomposition of point-symmetry model for two-way contingency tables. Journal of Statistical Planning and Inference, 36, 91-100. Zbl0772.62032MR1234154
  82. [82] Tomizawa S. (1994). Two kinds of measures of departure from symmetry in square contingency tables having nominal categories. Statistica Sinica, 4, 325-334. Zbl0823.62054MR1282878
  83. [83] Tomizawa S. (1995a). Measures of departure from marginal homogeneity for contingency tables with nominal categories. The Statistician, 44, 425-439. 
  84. [84] Tomizawa S. (1995b). A generalization of the marginal homogeneity model for square contingency tables with ordered categories. Journal of Educational and Behavioral Statistics, 20, 349-360. 
  85. [85] Tomizawa S. (1998). A decomposition of the marginal homogeneity model into three models for square contingency tables with ordered categories. Sankhyā, Series B, 60, 293-300. Zbl0973.62048MR1721527
  86. [86] Tomizawa S. and Makii T. (2001). Generalized measures of departure from marginal homogeneity for contingency tables with nominal categories. Journal of Statistical Research, 35, 1-24. MR1891657
  87. [87] Tomizawa S., Miyamoto N. and Ashihara N. (2003). Measure of departure from marginal homogeneity for square contingency tables having ordered categories. Behaviormetrika, 30, 173-193. Zbl1121.62549MR2037926
  88. [88] Tomizawa S., Miyamoto N. and Funato R. (2004). Conditional difference asymmetry model for square contingency tables with nominal categories. Journal of Applied Statistics, 31, 271-277. Zbl1121.62499MR2061383
  89. [89] Tomizawa S., Miyamoto N. and Hatanaka Y. (2001). Measure of asymmetry for square contingency tables having ordered categories. Australian and New Zealand Journal of Statistics, 43, 335-349. Zbl0991.62040MR1859123
  90. [90] Tomizawa S., Miyamoto N., Yamamoto K. and Sugiyama A. (2007). Extensions of linear diagonals-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables. Statistica Neerlandica, 61, 273-283. Zbl1121.62058MR2355059
  91. [91] Tomizawa S., Miyamoto N. and Yamane S. (2005). Power-divergence-type measure of departure from diagonals-parameter symmetry for square contingency tables with ordered categories. Statistics, 39, 107-115. Zbl1115.62331MR2145474
  92. [92] Tomizawa S., Miyamoto N. and Yamamoto K. (2006). Decomposition for polynomial cumulative symmetry model in square contingency tables with ordered categories. Metron, 64, 303-314. MR2352654
  93. [93] Tomizawa S. and Murata M. (1992). Gauss discrepancy type measure of degree of residuals from symmetry for square contingency tables. Journal of the Korean Statistical Society, 21, 59-69. 
  94. [94] Tomizawa S. and Saitoh K. (1999a). Measure of departure from conditional symmetry for square contingency tables with ordered categories. Journal of the Japan Statistical Society, 29, 65-78. Zbl1069.62532MR1718064
  95. [95] Tomizawa S. and Saitoh K. (1999b). Kullback-Leibler information type measure of departure from conditional symmetry and decomposition of measure from symmetry for contingency tables. Calcutta Statistical Association Bulletin, 49, 31-39. Zbl1132.62330MR1745525
  96. [96] Tomizawa S., Seo T. and Yamamoto H. (1998). Power-divergence-type measure of departure from symmetry for square contingency tables that have nominal categories. Journal of Applied Statistics, 25, 387-398. Zbl0936.62066MR1647284
  97. [97] Upton G. J. G. (1978). The Analysis of Cross-tabulated Data. Wiley, New York. MR513227
  98. [98] Van der Heijden P. G. M., de Falguerolles A. and de Leeuw J. (1989). A combined approach to contingency table analysis using correspondence analysis and log-linear analysis. Applied Statistics, 38, 249-292. Zbl0707.62114MR1001477
  99. [99] Van der Heijden P. G. M. and Mooijaart A. (1995). Some new log-bilinear models for the analysis of asymmetry in a square contingency table. Sociological Methods and Research, 24, 7-29. 
  100. [100] Wall K. D. and Lienert G. A. (1976). A test for point-symmetry in J-dimensional contingency-cubes. Biometrical Journal, 18, 259-264. Zbl0335.62030
  101. [101] White A. A., Landis J. R. and Cooper M. M. (1982). A note on the equivalence of several marginal homogeneity test criteria for categorical data. International Statistical Review, 50, 27-34. MR668608
  102. [102] Yamamoto H. (2004). A measure of departure from symmetry for multi-way contingency tables with nominal categories. Japanese Journal of Biometrics, 25, 69-88. 
  103. [103] Yamamoto K. and Tomizawa S. (2007). Decomposition of measure for marginal homogeneity in square contingency tables with ordered categories. Austrian Journal of Statistics, 36, 105-114. Zbl1152.62037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.