Decay of solutions of the elastic wave equation with a localized dissipation
Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)
- Volume: 12, Issue: 3, page 267-301
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBellassoued, Mourad. "Decay of solutions of the elastic wave equation with a localized dissipation." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.3 (2003): 267-301. <http://eudml.org/doc/73604>.
@article{Bellassoued2003,
author = {Bellassoued, Mourad},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {elastic wave equation; decay of energy; Carleman estimates; Riemannian manifold},
language = {eng},
number = {3},
pages = {267-301},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Decay of solutions of the elastic wave equation with a localized dissipation},
url = {http://eudml.org/doc/73604},
volume = {12},
year = {2003},
}
TY - JOUR
AU - Bellassoued, Mourad
TI - Decay of solutions of the elastic wave equation with a localized dissipation
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 3
SP - 267
EP - 301
LA - eng
KW - elastic wave equation; decay of energy; Carleman estimates; Riemannian manifold
UR - http://eudml.org/doc/73604
ER -
References
top- [1] Anné ( C.). - A shift between Dirichlet and Neumann spectrum for generalized linear elasticity. Asymptot. Anal.19, 3-4, p. 297-316 (1999). Zbl0943.74005MR1696228
- [2] Bardos ( C. ) , Lebeau ( G.) and Rauch ( J.). - Contrôle et stabilisation dans les problèmes hyperboliques. Appendix, in Lions, Tome1, Controlabilite exacte, stabilisation et perturbations des systemes distribués, Masson, RMA 8, ( 1988).
- [3] Bellassoued ( M.). - Distribution of Resonances and Decay Rate of the Local energy for the Elastic Wave Equation. Comm. Math. Phys.215, p. 575-408 (2000). Zbl0978.35077MR1799852
- [4] Bellassoued ( M.). - Carleman Estimates and Distribution of Resonances for the transparent Obstacle and Application to the Stabilization . To appear in Asymptotic analysis. Zbl1137.35388MR2011790
- [5] Bellassoued ( M.). - Unicité et Contrôle pour le système de Lamé. Optimisation and Calculus of Variations. ESAIM:COCV6, p. 561-592, September 2001. Zbl1007.35006
- [6] Burq ( N.). - Décroissance de l'energie locale de l'equation des ondes pour le problème exterieur et absence de résonances au voisinage du réel , Acta Math. 180, 1, p. 1-29 (1998). Zbl0918.35081MR1618254
- [7] Hörmander ( L.). - The analysis of linear partial differential operators, Springer Verlag Tomes 1, 2, 3.
- [8] Horn ( A.M. ). - Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity. J. Math. Anal. Appl.223, 1, p. 126-150 (1998). Zbl0913.93062MR1627344
- [9] Kawashita ( M.). - On the Local Energy Decay Property for the Elastic Wave equation with Neumann boundary condition, Duke Math. J.67, p. 333-351 (1992). Zbl0795.35061MR1177309
- [10] Lagnese ( J.). - Boundary Stabilization of Linear Elastodynamic systems, SIAM J. Control and Optimization21, 6, p. 968-984 (1983). Zbl0531.93044MR719524
- [11] Lasiecka ( I.) and Triggiani ( R.). - Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim.25, 2, p. 189-224 (1992). Zbl0780.93082MR1142681
- [12] Lebeau ( G. ). - Equation des ondes amorties. In A. Boutet de Monvel and V. Marchenko, editors, Algebraic and Geometric Methods in Mathematical Physics. Kluwer Academic, the Netherlands, p. 73-109 (1996). Zbl0863.58068MR1385677
- [13] Lebeau ( G. ) and Robbiano ( L.). — Stabilisation de l'equation des ondes par le bord, Duke math. J.86, 3, p. 465-491 (1997). Zbl0884.58093MR1432305
- [14] Lions ( J.-L. ). - Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. 8. Masson, Paris, (1988). Zbl0653.93002
- [15] Tataru ( D. ). - Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. (9) 75, 4, p. 367-408 (1996). Zbl0896.35023MR1411157
- [16] Taylor ( M. ). - Rayleigh waves in linear elasticity as a propagation of singularities phenomenon. Part. Diff. Equat and Geo (Proc. Conf., Park City, Utah, 1977, p. 273-291, Lecture Notes in Pure and Appl. Math , 48, Dekker, New York, (1979). Zbl0432.73021MR535598
- [17] Taylor ( M. ). - Reflection of singularities of solution to systems of differential equations, Comm. Pure App. Math.28, p. 457-478 (1975). Zbl0332.35058MR509098
- [18] Yamamoto ( K.). - Singularities of solutions to the boundary value problems for elastic and Maxwell's equations, Japan. J. Math.14, 1, p. 119-163 (1988). Zbl0669.73017MR945621
- [19] Wolka ( J.T. ) , Rowley ( B.), Lawruk ( B.). - Boundary value problems for elliptic systems. Cambridge University Press , Cambridge, (1995). Zbl0836.35042MR1343490
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.