Decay of solutions of the elastic wave equation with a localized dissipation

Mourad Bellassoued

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 3, page 267-301
  • ISSN: 0240-2963

How to cite

top

Bellassoued, Mourad. "Decay of solutions of the elastic wave equation with a localized dissipation." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.3 (2003): 267-301. <http://eudml.org/doc/73604>.

@article{Bellassoued2003,
author = {Bellassoued, Mourad},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {elastic wave equation; decay of energy; Carleman estimates; Riemannian manifold},
language = {eng},
number = {3},
pages = {267-301},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Decay of solutions of the elastic wave equation with a localized dissipation},
url = {http://eudml.org/doc/73604},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Bellassoued, Mourad
TI - Decay of solutions of the elastic wave equation with a localized dissipation
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 3
SP - 267
EP - 301
LA - eng
KW - elastic wave equation; decay of energy; Carleman estimates; Riemannian manifold
UR - http://eudml.org/doc/73604
ER -

References

top
  1. [1] Anné ( C.). - A shift between Dirichlet and Neumann spectrum for generalized linear elasticity. Asymptot. Anal.19, 3-4, p. 297-316 (1999). Zbl0943.74005MR1696228
  2. [2] Bardos ( C. ) , Lebeau ( G.) and Rauch ( J.). - Contrôle et stabilisation dans les problèmes hyperboliques. Appendix, in Lions, Tome1, Controlabilite exacte, stabilisation et perturbations des systemes distribués, Masson, RMA 8, ( 1988). 
  3. [3] Bellassoued ( M.). - Distribution of Resonances and Decay Rate of the Local energy for the Elastic Wave Equation. Comm. Math. Phys.215, p. 575-408 (2000). Zbl0978.35077MR1799852
  4. [4] Bellassoued ( M.). - Carleman Estimates and Distribution of Resonances for the transparent Obstacle and Application to the Stabilization . To appear in Asymptotic analysis. Zbl1137.35388MR2011790
  5. [5] Bellassoued ( M.). - Unicité et Contrôle pour le système de Lamé. Optimisation and Calculus of Variations. ESAIM:COCV6, p. 561-592, September 2001. Zbl1007.35006
  6. [6] Burq ( N.). - Décroissance de l'energie locale de l'equation des ondes pour le problème exterieur et absence de résonances au voisinage du réel , Acta Math. 180, 1, p. 1-29 (1998). Zbl0918.35081MR1618254
  7. [7] Hörmander ( L.). - The analysis of linear partial differential operators, Springer Verlag Tomes 1, 2, 3. 
  8. [8] Horn ( A.M. ). - Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity. J. Math. Anal. Appl.223, 1, p. 126-150 (1998). Zbl0913.93062MR1627344
  9. [9] Kawashita ( M.). - On the Local Energy Decay Property for the Elastic Wave equation with Neumann boundary condition, Duke Math. J.67, p. 333-351 (1992). Zbl0795.35061MR1177309
  10. [10] Lagnese ( J.). - Boundary Stabilization of Linear Elastodynamic systems, SIAM J. Control and Optimization21, 6, p. 968-984 (1983). Zbl0531.93044MR719524
  11. [11] Lasiecka ( I.) and Triggiani ( R.). - Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim.25, 2, p. 189-224 (1992). Zbl0780.93082MR1142681
  12. [12] Lebeau ( G. ). - Equation des ondes amorties. In A. Boutet de Monvel and V. Marchenko, editors, Algebraic and Geometric Methods in Mathematical Physics. Kluwer Academic, the Netherlands, p. 73-109 (1996). Zbl0863.58068MR1385677
  13. [13] Lebeau ( G. ) and Robbiano ( L.). — Stabilisation de l'equation des ondes par le bord, Duke math. J.86, 3, p. 465-491 (1997). Zbl0884.58093MR1432305
  14. [14] Lions ( J.-L. ). - Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. 8. Masson, Paris, (1988). Zbl0653.93002
  15. [15] Tataru ( D. ). - Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. (9) 75, 4, p. 367-408 (1996). Zbl0896.35023MR1411157
  16. [16] Taylor ( M. ). - Rayleigh waves in linear elasticity as a propagation of singularities phenomenon. Part. Diff. Equat and Geo (Proc. Conf., Park City, Utah, 1977, p. 273-291, Lecture Notes in Pure and Appl. Math , 48, Dekker, New York, (1979). Zbl0432.73021MR535598
  17. [17] Taylor ( M. ). - Reflection of singularities of solution to systems of differential equations, Comm. Pure App. Math.28, p. 457-478 (1975). Zbl0332.35058MR509098
  18. [18] Yamamoto ( K.). - Singularities of solutions to the boundary value problems for elastic and Maxwell's equations, Japan. J. Math.14, 1, p. 119-163 (1988). Zbl0669.73017MR945621
  19. [19] Wolka ( J.T. ) , Rowley ( B.), Lawruk ( B.). - Boundary value problems for elliptic systems. Cambridge University Press , Cambridge, (1995). Zbl0836.35042MR1343490

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.