A new criterion for knots with free periods

Nafaa Chbili

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 4, page 465-477
  • ISSN: 0240-2963

How to cite

top

Chbili, Nafaa. "A new criterion for knots with free periods." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.4 (2003): 465-477. <http://eudml.org/doc/73613>.

@article{Chbili2003,
author = {Chbili, Nafaa},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {lens knot; HOMFLY polynomial},
language = {eng},
number = {4},
pages = {465-477},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {A new criterion for knots with free periods},
url = {http://eudml.org/doc/73613},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Chbili, Nafaa
TI - A new criterion for knots with free periods
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 4
SP - 465
EP - 477
LA - eng
KW - lens knot; HOMFLY polynomial
UR - http://eudml.org/doc/73613
ER -

References

top
  1. [1] Chbili ( N. ) , On the invariants of lens knots, Proceedings of knots 96, World Scientific Publishing Co, p. 365-375 (1997). Zbl0971.57018MR1664974
  2. [2] Chbili ( N. ), Le polynôme de Homfly des nœuds librement périodiques, C. R. Acad. Sci. Paris t. 325, Série I, p. 411-414 (1997). Zbl0884.57008
  3. [3] Chbili ( N. ), The Jones polynomials of freely periodic knots , Journal of Knot Theory and its Ramifications9(7), p. 885-891 (2000). Zbl0999.57012MR1780593
  4. [4] Chbili ( N. ), The skein polynomial of freely periodic knots , Topology Appl.121/3, p. 535-542 (2002). Zbl1022.57003MR1909007
  5. [5] Hartely ( R. ), Knots with free period, Can. J. Math.XXXIII(1), p. 91-102 (1981). Zbl0481.57003MR608857
  6. [6] Freyd ( P.) , Yetter ( D.) ; Hoste ( J.) ; Lickorish ( W.B.R.), Millett ( K.) ; Ocneanu ( A. ), A new polynomial invariant of knots and links , Bulletin of the American Mathematical Society12(2), p. 239-246 (1985). Zbl0572.57002MR776477
  7. [7] Jones ( V.F.R. ), Hecke algebra representations of braid groups and link polynomials, Annals of Mathematics126, p. 335-388 (1987). Zbl0631.57005MR908150
  8. [8] Kanenobu ( T.), Miyazawa ( Y.), The second and third terms of the HOMFLY polynomial of a link, Kobe J. Math.16, p. 147-159 (1999). Zbl0979.57003MR1745025
  9. [9] Lickorish ( W.B.R.), Millett ( K.C.), A polynomial invariant of oriented links, Topology26, p. 107-141 (1987). Zbl0608.57009MR880512
  10. [10] Przytycki ( J.H.), On Murasugi's and Traczyk's criteria for periodic links, Math. Ann.283, p. 465-478 (1989). Zbl0642.57007MR985242
  11. [11] Przytycki ( J.H.), An elementary proof of the Traczyk-Yokota criteria for periodic knots, Proc. Amer. Math. Soc.123, p. 1607-1611 (1995). Zbl0843.57009MR1257121
  12. [12] Rolfsen ( D.), Knots and Links, Mathematics Lecture Series, Publish or Perish, Inc.Houston, Texas, (1990). Zbl0854.57002MR1277811
  13. [13] Rubinstein ( J.H. ), An algorithm to recognize the 3-sphere , Proc. Int. Con. Math. Zürich, p. 601-611 (1994). Zbl0864.57009
  14. [14] Traczyk ( P. ) , A criterion for knots of period 3, Topology appl36, p. 275-281 (1990). Zbl0706.57001MR1070706
  15. [15] Traczyk ( P. ) , Periodic knots and the skein polynomial , Invent. math.106(1), p. 73-84 (1991). Zbl0753.57008MR1123374
  16. [16] Yokota ( Y. ), The skein polynomial of periodic knots , Math. Ann.291, p. 281-291 (1991). Zbl0724.57007MR1129368

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.