Complex a priori bounds revisited

Michael Yampolsky

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 4, page 533-547
  • ISSN: 0240-2963

How to cite

top

Yampolsky, Michael. "Complex a priori bounds revisited." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.4 (2003): 533-547. <http://eudml.org/doc/73616>.

@article{Yampolsky2003,
author = {Yampolsky, Michael},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {real quadratic polynomials; complex a priori bounds; parabolic Julia sets; normalizations; perturbations of parabolic maps; rigidity},
language = {eng},
number = {4},
pages = {533-547},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Complex a priori bounds revisited},
url = {http://eudml.org/doc/73616},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Yampolsky, Michael
TI - Complex a priori bounds revisited
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 4
SP - 533
EP - 547
LA - eng
KW - real quadratic polynomials; complex a priori bounds; parabolic Julia sets; normalizations; perturbations of parabolic maps; rigidity
UR - http://eudml.org/doc/73616
ER -

References

top
  1. [GS] Graczyk J. , Swiatek G., Polynomial-like property for real quadratic polynomials, Topology Proc.21, p. 33-112 (1996). Zbl1019.37021MR1489190
  2. [Ep] Epstein A. , Towers of finite type complex analytic maps , PhD Thesis, CUNY, (1993). 
  3. [EKT] Epstein A., Keen L., Tresser C., The set of maps F a,b : x ↦ x + a + b/2π sin(2πx) with any given rotation interval is contractible , Commun. Math. Phys.173, p. 313-333 (1995). Zbl0839.58021MR1355627
  4. [EY] Epstein A. , Yampolsky M., The universal parabolic map, Erg. Theory and Dynam. Systems, to appear. 
  5. [Hin] Hinkle B. , Parabolic limits of renormalization, Ergodic Theory Dynam. Systems20, no. 1, p. 173-229 (2000). Zbl0982.37041MR1747025
  6. [LvS] Levin G. , Van Strien S., Local connectivity of the Julia set of real polynomials, Ann. of Math. (2) 147, no. 3, p. 471-541 (1998). Zbl0941.37031MR1637647
  7. [Lyu3] Lyubich M. , Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2) 140, no. 2, p. 347-404 (1994). Zbl0821.58014MR1298717
  8. [Lyu4] Lyubich M., Dynamics of quadratic polynomials, I-II, Acta Math., v. 178, p. 185-297 (1997). Zbl0908.58053MR1459261
  9. [Lyu5] Lyubich M., Feigenbaum-Coullet-Tresser Universality and Milnor's Hairiness Conjecture, Ann. of Math. (2) 149, no. 2, p. 319-420 (1999). Zbl0945.37012MR1689333
  10. [Lyu6] Lyubich M., Almost every real quadratic map is either regular or stochastic, Annals of Math.156, no. 1, p. 1-78 (2002). Zbl1160.37356MR1935840
  11. [LY] Lyubich M. and Yampolsky M., Dynamics of quadratic polynomials: complex bounds for real maps, Ann. Inst. Fourier47, 4, p. 1219-1255 (1997 ). Zbl0881.58053MR1488251
  12. [McM1] McMullen C., Complex dynamics and renormalization , Annals of Math. Studies, v. 135, Princeton Univ. Press, (1994). Zbl0822.30002MR1312365
  13. [McM2] Mcmullen C., Renormalization and 3-manifolds which fiber over the circle, Annals of Math. Studies, Princeton University Press, (1996). Zbl0860.58002MR1401347
  14. [MvS] De Melo W. & Van Strien S., One dimensional dynamics , Springer-Verlag, (1993 ). Zbl0791.58003
  15. [Sh] Shishikura M., The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2) 147, no. 2, p. 225-267 (1998). Zbl0922.58047MR1626737
  16. [Sul1] Sullivan D., Quasiconformal homeomorphisms and dynamics, topology and geometry, Proc. ICM-86, Berkeley, v. II, p. 1216-1228. Zbl0698.58030MR934326
  17. [Sul2] Sullivan D., Bounds, quadratic differentials, and renormalization conjectures, AMS Centennial Publications. 2: Mathematics into Twenty-first Century (1992). Zbl0936.37016MR1184622
  18. [Ya] Yampolsky M., The attractor of renormalization and rigidity of towers of critical circle maps, Comm. Math. Phys.218, no. 3, p. 537-568 (2001). Zbl0978.37033MR1828852

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.