Complex a priori bounds revisited
Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)
- Volume: 12, Issue: 4, page 533-547
- ISSN: 0240-2963
Access Full Article
topHow to cite
topYampolsky, Michael. "Complex a priori bounds revisited." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.4 (2003): 533-547. <http://eudml.org/doc/73616>.
@article{Yampolsky2003,
author = {Yampolsky, Michael},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {real quadratic polynomials; complex a priori bounds; parabolic Julia sets; normalizations; perturbations of parabolic maps; rigidity},
language = {eng},
number = {4},
pages = {533-547},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Complex a priori bounds revisited},
url = {http://eudml.org/doc/73616},
volume = {12},
year = {2003},
}
TY - JOUR
AU - Yampolsky, Michael
TI - Complex a priori bounds revisited
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 4
SP - 533
EP - 547
LA - eng
KW - real quadratic polynomials; complex a priori bounds; parabolic Julia sets; normalizations; perturbations of parabolic maps; rigidity
UR - http://eudml.org/doc/73616
ER -
References
top- [GS] Graczyk J. , Swiatek G., Polynomial-like property for real quadratic polynomials, Topology Proc.21, p. 33-112 (1996). Zbl1019.37021MR1489190
- [Ep] Epstein A. , Towers of finite type complex analytic maps , PhD Thesis, CUNY, (1993).
- [EKT] Epstein A., Keen L., Tresser C., The set of maps F a,b : x ↦ x + a + b/2π sin(2πx) with any given rotation interval is contractible , Commun. Math. Phys.173, p. 313-333 (1995). Zbl0839.58021MR1355627
- [EY] Epstein A. , Yampolsky M., The universal parabolic map, Erg. Theory and Dynam. Systems, to appear.
- [Hin] Hinkle B. , Parabolic limits of renormalization, Ergodic Theory Dynam. Systems20, no. 1, p. 173-229 (2000). Zbl0982.37041MR1747025
- [LvS] Levin G. , Van Strien S., Local connectivity of the Julia set of real polynomials, Ann. of Math. (2) 147, no. 3, p. 471-541 (1998). Zbl0941.37031MR1637647
- [Lyu3] Lyubich M. , Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2) 140, no. 2, p. 347-404 (1994). Zbl0821.58014MR1298717
- [Lyu4] Lyubich M., Dynamics of quadratic polynomials, I-II, Acta Math., v. 178, p. 185-297 (1997). Zbl0908.58053MR1459261
- [Lyu5] Lyubich M., Feigenbaum-Coullet-Tresser Universality and Milnor's Hairiness Conjecture, Ann. of Math. (2) 149, no. 2, p. 319-420 (1999). Zbl0945.37012MR1689333
- [Lyu6] Lyubich M., Almost every real quadratic map is either regular or stochastic, Annals of Math.156, no. 1, p. 1-78 (2002). Zbl1160.37356MR1935840
- [LY] Lyubich M. and Yampolsky M., Dynamics of quadratic polynomials: complex bounds for real maps, Ann. Inst. Fourier47, 4, p. 1219-1255 (1997 ). Zbl0881.58053MR1488251
- [McM1] McMullen C., Complex dynamics and renormalization , Annals of Math. Studies, v. 135, Princeton Univ. Press, (1994). Zbl0822.30002MR1312365
- [McM2] Mcmullen C., Renormalization and 3-manifolds which fiber over the circle, Annals of Math. Studies, Princeton University Press, (1996). Zbl0860.58002MR1401347
- [MvS] De Melo W. & Van Strien S., One dimensional dynamics , Springer-Verlag, (1993 ). Zbl0791.58003
- [Sh] Shishikura M., The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2) 147, no. 2, p. 225-267 (1998). Zbl0922.58047MR1626737
- [Sul1] Sullivan D., Quasiconformal homeomorphisms and dynamics, topology and geometry, Proc. ICM-86, Berkeley, v. II, p. 1216-1228. Zbl0698.58030MR934326
- [Sul2] Sullivan D., Bounds, quadratic differentials, and renormalization conjectures, AMS Centennial Publications. 2: Mathematics into Twenty-first Century (1992). Zbl0936.37016MR1184622
- [Ya] Yampolsky M., The attractor of renormalization and rigidity of towers of critical circle maps, Comm. Math. Phys.218, no. 3, p. 537-568 (2001). Zbl0978.37033MR1828852
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.