Comparison principle and Liouville type results for singular fully nonlinear operators

Isabeau Birindelli; Françoise Demengel

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 2, page 261-287
  • ISSN: 0240-2963

How to cite

top

Birindelli, Isabeau, and Demengel, Françoise. "Comparison principle and Liouville type results for singular fully nonlinear operators." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.2 (2004): 261-287. <http://eudml.org/doc/73625>.

@article{Birindelli2004,
author = {Birindelli, Isabeau, Demengel, Françoise},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {2},
pages = {261-287},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Comparison principle and Liouville type results for singular fully nonlinear operators},
url = {http://eudml.org/doc/73625},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Birindelli, Isabeau
AU - Demengel, Françoise
TI - Comparison principle and Liouville type results for singular fully nonlinear operators
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 2
SP - 261
EP - 287
LA - eng
UR - http://eudml.org/doc/73625
ER -

References

top
  1. [1] Berestycki ( H. ), Capuzzo Dolcetta ( I.), Nirenberg ( L.). - Problèmes Elliptiques indéfinis et Théorèmes de Liouville non-linéaires, C. R. Acad. Sci. Paris Sér. I Math.317, no. 10, p. 945-950 (1993). Zbl0820.35056MR1249366
  2. [2] Berestycki ( H.), Capuzzo Dolcetta ( I.), Nirenberg ( L.). - Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal.4, no. 1, p. 59-78 (1994). Zbl0816.35030MR1321809
  3. [3] Birindelli ( I.), Demengel ( F.). - Some Liouville Theorems for the p-Laplacian, Elec. J. Differential Equations, Conference 08, 2002. Zbl1034.35031MR1990294
  4. [4] Wigniolle ( J. ). - A strong maximum principle for fully non linear degenerate operators, Prépublications de l'université de Cergy-Pontoise. 
  5. [5] Birindelli ( I.), Mitidieri ( E.). - Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect.A128, no. 6, p. 1217-1247 (1998). Zbl0919.35023MR1664101
  6. [6] L. Caffarelli ( L.), Cabré ( X.). - Fully-nonlinear equations, Colloquium Publications43, American Mathematical Society, Providence, RI (1995). Zbl0834.35002
  7. [7] Chen ( Y.G. ), Giga ( Y.), Goto ( S.). - Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , Journal of Differential Geometry33, p. 749-786 (1991). Zbl0696.35087MR1100211
  8. [8] Crandall ( M.G.), Ishii ( H.), Lions ( P.L.). - User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.)27, no. 1, p. 1-67 (1992). Zbl0755.35015MR1118699
  9. [9] Cutri ( A.) , Leoni ( F.). - On the Liouville property for fully-nonlinear equationsAnnales de l'Institut H. Poincaré, Analyse non-linéaire , p. 219-245 (2000). Zbl0956.35035MR1753094
  10. [10] Evans ( C. ), Spruck ( J.). - Motion of level sets by mean curvature, Journal of Diff. Geom.33, p. 635-681 (1991). Zbl0726.53029MR1100206
  11. [11] Gidas ( B.). — Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, Nonlinear Partial Differential equations in engineering and applied sciences, Eds. R. Sternberg, A. Kalinowski and J. Papadakis, Proc. Conf. Kingston, R.I 1979, Lect. Notes on pure appl. maths, 54, Decker, New York, p. 255-273 (1980). Zbl0444.35038MR577096
  12. [12] Ishii ( H. ). - Viscosity solutions of non-linear partial differential equations, Sugaku Expositions vol 9, (1996). Zbl0968.35002MR1426875
  13. [13] Jensen ( R. ). - The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal.101, p. 1-27 (1988). Zbl0708.35019MR920674
  14. [14] Jensen ( R. ), Lions ( P.L.), Souganidis ( T.). - A uniqueness result for viscosity solutions of second order fully-nonlinear partial differential equations, Proc. Amer. Math. Soc.102, p. 975-978 (1988). Zbl0662.35048MR934877
  15. [15] Juutinen ( P.), Lindquist ( P.), Manfredi ( J.). - On the equivalence of viscosity solutions and weak solutions for a quasi linear equation, SIAM J. Math. Anal.33, no. 3, p. 699-717 (2001). Zbl0997.35022MR1871417
  16. [16] Mitidieri ( E.), Pohozaev ( S.). - Absence of positive solutions for quasilinear elliptic problems in RN, (RussianTr. Mat. Inst. Steklova227 (1999), Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18, p. 192-222; translation in Proc. Steklov Inst. Math.1999, no. 4 (227), p. 186-216. Zbl1056.35507
  17. [17] Serrin ( J. ), Zou ( H.). - Cauchy-Liouville and universal boundedness theorems for quasi-linear elliptic equations, Acta Math.189, no. 1, p. 79-142 (2002). Zbl1059.35040MR1946918
  18. [18] Vasquez ( J.L.). - A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim.12, p. 191-202, (1984). Zbl0561.35003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.