Power and exponential-power series solutions of evolution equations

Rodica D. Costin

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 4, page 551-573
  • ISSN: 0240-2963

How to cite

top

Costin, Rodica D.. "Power and exponential-power series solutions of evolution equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.4 (2004): 551-573. <http://eudml.org/doc/73637>.

@article{Costin2004,
author = {Costin, Rodica D.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {generalized Laplace transform; maximal exponential order},
language = {eng},
number = {4},
pages = {551-573},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Power and exponential-power series solutions of evolution equations},
url = {http://eudml.org/doc/73637},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Costin, Rodica D.
TI - Power and exponential-power series solutions of evolution equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 4
SP - 551
EP - 573
LA - eng
KW - generalized Laplace transform; maximal exponential order
UR - http://eudml.org/doc/73637
ER -

References

top
  1. [1] Balser ( W. ). - Divergent solutions of the heat equation: on an article of Lutz, Miyake, and Schäfke, Pacific J. Math.188, no.1, 53-63 (1999). Zbl0960.35045MR1680415
  2. [2] Braaksma ( B.L.J.). — Transseries for a class of nonlinear difference equations, J. Differ. Equations Appl.7, no. 5, 717-750 (2001). Zbl1001.39002MR1871576
  3. [3] Ecalle ( J. ). — Fonctions Resurgentes, Publications Mathematiquesd'Orsay ( 1981). Zbl0499.30034
  4. [4] Ecalle ( J. ). - In Bifurcations and periodic orbits of vector fields, NATO ASI Series, Vol. 408 (1993). 
  5. [5] Ecalle ( J. ). - Finitude des cycles limites., Preprint 90-36 of Universite de Paris-Sud (1990 ). MR1094378
  6. [6] Costin ( O. ). — Exponential asymptotics, transseries, and generalized Borel summation for analytic rank one systems of ODE's, IMRN, No. 8, p. 377-417 (1995). Zbl0841.34005MR1355642
  7. [7] Costin ( O. ). - On Borel summation and Stokes phenomena of nonlinear differential systems, Duke Math. J., 93, n° 2, 289-344 (1998). Zbl0948.34068
  8. [8] Costin ( O. ). — Correlation between pole location and asymptotic behavior for Painlevé I solutions, Comm. Pure and Appl. Math., Vol. LII, 0461-0478 (1999 ). Zbl0910.34003MR1659074
  9. [9] Costin ( O. ), Kruskal ( M.D.). — On optimal truncation of divergent series solutions of nonlinear differential systems; Berry smoothing , Proc. R. Soc. Lond.A, 455, 1931-1956 (1999). Zbl0945.34071MR1701558
  10. [10] Costin ( O. ), Costin ( R.D.). — On the formation of singularities of solutions of nonlinear differential systems in antistokes directions, Invent. Math., 145, 425-485 (2001). Zbl1034.34102MR1856397
  11. [11] Costin ( O. ), Tanveer ( S.). — Nonlinear evolution PDEs in R+ × Cd: existence and uniqueness of solutions, asymptotic and Borel summability , CPAM, Vol. LIII, p. 0001-0026 (2000 ). 
  12. [12] Costin ( O. ) , Tanveer ( S.). — Complex Singularity Analysis for a nonlinear PDEs, Preprint. 
  13. [13] Lutz ( D.L. ), Miyake ( M.), Schäfke ( R.). — Nagoya Math. J., 154, p. 1-29 (1999). Zbl0958.35061MR1689170
  14. [14] Kruskal ( M.D.). — Asymptotology. 
  15. [15] Kuik ( R.). — Transseries in Difference and differential equations , Thesis (2003). 
  16. [16] Whittaker ( E.T. ), Watson ( G.N.). — A course of modern analysis, Cambridge University Press ( 1962). Zbl0105.26901MR1424469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.