Solutions stationnaires des équations de Vlasov-Poisson à symétries cylindriques

Laurent Bernis

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 1, page 51-70
  • ISSN: 0240-2963

How to cite

top

Bernis, Laurent. "Solutions stationnaires des équations de Vlasov-Poisson à symétries cylindriques." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.1 (2005): 51-70. <http://eudml.org/doc/73644>.

@article{Bernis2005,
author = {Bernis, Laurent},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {existence; energy; angular momentum},
language = {fre},
number = {1},
pages = {51-70},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Solutions stationnaires des équations de Vlasov-Poisson à symétries cylindriques},
url = {http://eudml.org/doc/73644},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Bernis, Laurent
TI - Solutions stationnaires des équations de Vlasov-Poisson à symétries cylindriques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 1
SP - 51
EP - 70
LA - fre
KW - existence; energy; angular momentum
UR - http://eudml.org/doc/73644
ER -

References

top
  1. [1] Batt ( J.) , Faltenbacher ( W.), Horst ( E.). — Stationary spherically symmetric models in stellar dynamics, Archives for Rational Mechanics and Analysis93, p.159-183 (1986). Zbl0605.70008MR823117
  2. [2] Batt ( J.) , Berestycki ( H.), Degond ( P.), Perthame ( B.). — Some families of solutions of the Vlasov-Poisson system, Archives for Rational Mechanics and Analysis104-1, Springer-Verlag, p. 205-210 (1988). Zbl0703.35171MR956568
  3. [3] Batt ( J.) , Rein ( G. ). — A rigorous stability result for the Vlasov-Poisson system in three dimensions, Ann. Mat. Pura Appl. (4) 164, p. 133-154 (1993). Zbl0791.49030MR1243953
  4. [4] Ben Abdallah ( N.), Dolbeault ( J.). - Relative entropies for kinetic equations in bounded domains, Cahiers du CEREMADE, 0133 (2001). 
  5. [5] Bernis ( L. ) , Chaix ( P.). — Étude mathémétique des solutions stationnaires des équations de Vlasov Poisson en symétrie cylindrique , Note CEA CEAB3/DRIF/DPTA/SPPE N98-50/DO. 
  6. [6] Bers ( E.) , Delacroix ( J.L.). - Physique des plasmas t.2. Savoirs actuels , Interédition/CNRS Editions (1994). 
  7. [7] Braasch ( P. ), Rein ( G.), Vukadinović ( J.). - Nonlinear stability of stationary plasmas-an extension of the energy-Casimir method, SIAM J. Appl. Math.59, p. 831-844 (1999). Zbl1050.35118MR1661247
  8. [8] Caceres ( M.J. ), Carrillo ( J.A.), Dolbeault ( J.). - Non linear stability in Lp for solutions of the Vlasov-Poisson system for charched particles . Cahiers du CEREMADE, 0131 (2001). 
  9. [9] Chaix ( P.). — Étude du Halo, Note CEA NT/PT/RFP 56/95. 
  10. [10] Dolbeault ( J.). — Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system : external potential and confinement (large time behavior and steady states, J. Math. Pures Appl.78, p. 121-157 (1999). Zbl1115.82316MR1677677
  11. [11] Dolbeault ( J. ). — Solutions stationnaires de masse finie pour l'équation de Vlasov avec potentiel central en dimension trois : une démonstration du théorème de Jeans, Actes du Workshop « Fondements mathématiques pour les équations de Vlasov et de Boltzmann », GDR Sparch ( 1994). 
  12. [12] Dolbeault ( J.). — Monokinetic charged particle beams : qualitative behavior of the solutions of the Cauchy problem and 2d time-periodic solutions of the Vlasov-Poisson system, Comm. Partial Differential Equations25 n°. 9-10, p. 1567-1647 (2000). Zbl0971.35075
  13. [13] Klein ( H.). — Procedings of the Linear Accelerator Conference , LINAC-94, Tsukuba, 322. 
  14. [14] Lawrence ( G. ). - Proceedings of the Particle Accelerator Conference. PAC-95, Dallas, 35. 
  15. [15] Lions ( P.L. ), Perthame ( B.). — Régularité des solutions du système de Vlasov-Poisson en dimension 3, C.R Acad.Sci. Paris311, série I, p. 205-210 (1990). Zbl0722.35022MR1067989
  16. [16] Lynden-Bell ( D.). — Stellar dynamics. Part I. Only isolating integrals should be used in Jeans theorem, Mon. Nat. Roy. Astron. Soc.124 n° 1, p. 1-9 (1962), Zbl0105.23803
  17. Part II. Potentials with isolating integrals, Mon. Nat. Roy. Astron. Soc.124, n° 2, p. 95-123 (1962). Zbl0102.43801
  18. [17] Pfaffelmoser ( K.). - Global classical solutions of Vlasov-Poisson system in three dimensions for general initial data, J.Differential Equations95, n°2, p. 281-303 (1992). Zbl0810.35089
  19. [18] Schaeffer ( J.). — Global existence of smooth solutions to Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations16, n° 8-9, p. 1313-1335 (1991). Zbl0746.35050
  20. [19] Rein ( G.). - Non-linear stability for the Vlasov-Poisson system-the energy-Casimir method, Math. Methods Appl. Sci.17 , p. 1129-1140 (1994). Zbl0814.76094MR1303559

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.